
No Crash, No Exploit: Automated Verification of Embedded
Kernels

O. Nicole, M. Lemerre, S. Bardin, X. Rival

Coap seminar, 9 novembre 2023



Context: Abstract Interpretation with BINSEC/Codex

(Type-based)
Memory analysis

(Sparse)
scalar analysis

(High-level)
Control-flow analysis

SSA decompilation

Embedded kernel

Task Task Evil
Task

OS Security Verification Shape analysis

s♯ ⊨ e : τ

Memory safety verification
Model checking &
Counter-examples



Context: Abstract Interpretation with BINSEC/Codex

(Type-based)
Memory analysis

(Sparse)
scalar analysis

(High-level)
Control-flow analysis

SSA decompilation

Embedded kernel

Task Task Evil
Task

OS Security Verification Shape analysis

s♯ ⊨ e : τ

Memory safety verification
Model checking &
Counter-examples



How to protect an OS kernel against its worst defects?

Kernel

Task Task Task

Worst possible bugs for an OS kernel:

▶ Runtime errors Division by zero, illegal memory access…
The kernel crashes =⇒ the whole system crashes

▶ Privilege escalation
Kernel protections are bypassed =⇒ the whole system is compromised

Only way to guarantee their absence: formal methods.



How to protect an OS kernel against its worst defects?

Kernel

Task Task Task

Worst possible bugs for an OS kernel:
▶ Runtime errors Division by zero, illegal memory access…

The kernel crashes =⇒ the whole system crashes
▶ Privilege escalation

Kernel protections are bypassed =⇒ the whole system is compromised

Only way to guarantee their absence: formal methods.



How to protect an OS kernel against its worst defects?

Kernel

Task Task Task

Worst possible bugs for an OS kernel:
▶ Runtime errors Division by zero, illegal memory access…

The kernel crashes

=⇒ the whole system crashes
▶ Privilege escalation

Kernel protections are bypassed =⇒ the whole system is compromised

Only way to guarantee their absence: formal methods.



How to protect an OS kernel against its worst defects?

Kernel

Task Task Task

Worst possible bugs for an OS kernel:
▶ Runtime errors Division by zero, illegal memory access…

The kernel crashes =⇒ the whole system crashes

▶ Privilege escalation
Kernel protections are bypassed =⇒ the whole system is compromised

Only way to guarantee their absence: formal methods.



How to protect an OS kernel against its worst defects?

Kernel

Task Task Task

Worst possible bugs for an OS kernel:
▶ Runtime errors Division by zero, illegal memory access…

The kernel crashes =⇒ the whole system crashes

▶ Privilege escalation
Kernel protections are bypassed =⇒ the whole system is compromised

Only way to guarantee their absence: formal methods.



How to protect an OS kernel against its worst defects?

Kernel

Task Task Task

Worst possible bugs for an OS kernel:
▶ Runtime errors Division by zero, illegal memory access…

The kernel crashes =⇒ the whole system crashes
▶ Privilege escalation

Kernel protections are bypassed =⇒ the whole system is compromised

Only way to guarantee their absence: formal methods.



How to protect an OS kernel against its worst defects?

Kernel

Task Task Task

Worst possible bugs for an OS kernel:
▶ Runtime errors Division by zero, illegal memory access…

The kernel crashes =⇒ the whole system crashes
▶ Privilege escalation

Kernel protections are bypassed

=⇒ the whole system is compromised

Only way to guarantee their absence: formal methods.



How to protect an OS kernel against its worst defects?

Kernel

Task Task Task

Worst possible bugs for an OS kernel:
▶ Runtime errors Division by zero, illegal memory access…

The kernel crashes =⇒ the whole system crashes
▶ Privilege escalation

Kernel protections are bypassed =⇒ the whole system is compromised

Only way to guarantee their absence: formal methods.



How to protect an OS kernel against its worst defects?

Kernel

Task Task Task

Worst possible bugs for an OS kernel:
▶ Runtime errors Division by zero, illegal memory access…

The kernel crashes =⇒ the whole system crashes
▶ Privilege escalation

Kernel protections are bypassed =⇒ the whole system is compromised

Only way to guarantee their absence: formal methods.



Goals

We want a verification of
▶ absence of run-time errors (ARTE), and
▶ absence of privilege escalation (APE)

that is:

▶ Automated
▶ Comprehensive
▶ Generic
▶ Practical



Automated

▶ Avoid manual annotations



Comprehensive

▶ Check all the code (including boot and assembly sections)
▶ End-to-end verification, without trusting the compiler



Generic

∀ tasks, (kernel⊕ tasks) ⊨ APE, ARTE

▶ Verify kernel independently from the tasks
▶ No fundamental restriction (e.g. allow unbounded loops)



Practical

▶ Works on real-world, existing kernels without modification.



Contributions

Binsec/Codex, a static analyzer to verify APE and ARTE on embedded kernels.
▶ Automated

▶ Abstract interpretation on the system loop to infer kernel invariants
▶ APE is an implicit property (no specification needed)

▶ Comprehensive
▶ Machine code verification on the kernel executable

▶ Generic
▶ Parameterized verification (i.e. independent from the applications)
▶ Using a type-basedmemory analysis

▶ Practical
▶ Different treatment of boot code and runtime code
▶ Comprehensive evaluation on challenging case studies

unmodified version of ASTERIOS RTK, 96 variants of EducRTOS



Positioning wrt. the verification technique

Interactive proof
• seL4 [SOSP’09] • CertiKOS [OSDI’16]

Deductive verification
• Verve [PLDI’10] • Komodo [SOSP’17]

Proves strong properties, but requires huge expertise and effort.

“Push-button” verification
▶ PROSPER [CCS’13]

▶ Serval [SOSP’19]

▶ Phidias [EuroSys’20]

▶ Still require to write hundreds of kernel invariants

▶ Only support bounded loops (no priority scheduling)

▶ Requires a fixed memory layout (depends on the number of
tasks)

Us: Abstract interpretation

▶ ASTERIOS

▶ Infers all invariants
▶ Handles unbounded loops
▶ Handles parameterized verification
▶ Low annotation burden (e.g. 58 lines)



Positioning wrt. the verification technique

Interactive proof
• seL4 [SOSP’09] • CertiKOS [OSDI’16]

Deductive verification
• Verve [PLDI’10] • Komodo [SOSP’17]

Proves strong properties, but requires huge expertise and effort.

“Push-button” verification
▶ PROSPER [CCS’13]

▶ Serval [SOSP’19]

▶ Phidias [EuroSys’20]

▶ Still require to write hundreds of kernel invariants

▶ Only support bounded loops (no priority scheduling)

▶ Requires a fixed memory layout (depends on the number of
tasks)

Us: Abstract interpretation

▶ ASTERIOS

▶ Infers all invariants
▶ Handles unbounded loops
▶ Handles parameterized verification
▶ Low annotation burden (e.g. 58 lines)



Abstract interpretation basics

Abstract each numeric variable by an interval.

int i = 100;
int x = 0;
while(i > 1) {
i--;

}
int x = 42 / i;

▶ Abstract interpretation can prove properties. Here: no division by zero.
▶ No specification required for this property (it is implicit)

Absence of run-time errors (ARTE) is an implicit property.



Abstract interpretation basics

Abstract each numeric variable by an interval.

int i = 100;
int x = 0;
while(i > 1) {
i--;

}
int x = 42 / i;

▶ Abstract interpretation can prove properties. Here: no division by zero.
▶ No specification required for this property (it is implicit)

Absence of run-time errors (ARTE) is an implicit property.

i ∈ {100}



Abstract interpretation basics

Abstract each numeric variable by an interval.

int i = 100;
int x = 0;
while(i > 1) {
i--;

}
int x = 42 / i;

▶ Abstract interpretation can prove properties. Here: no division by zero.
▶ No specification required for this property (it is implicit)

Absence of run-time errors (ARTE) is an implicit property.

i ∈ {100}
i ∈ {100}, x ∈ {0}



Abstract interpretation basics

Abstract each numeric variable by an interval.

int i = 100;
int x = 0;
while(i > 1) {
i--;

}
int x = 42 / i;

▶ Abstract interpretation can prove properties. Here: no division by zero.
▶ No specification required for this property (it is implicit)

Absence of run-time errors (ARTE) is an implicit property.

i ∈ {100}
i ∈ {100}, x ∈ {0}
i ∈ {100}, x ∈ {0}



Abstract interpretation basics

Abstract each numeric variable by an interval.

int i = 100;
int x = 0;
while(i > 1) {
i--;

}
int x = 42 / i;

▶ Abstract interpretation can prove properties. Here: no division by zero.
▶ No specification required for this property (it is implicit)

Absence of run-time errors (ARTE) is an implicit property.

i ∈ {100}
i ∈ {100}, x ∈ {0}
i ∈ {100}, x ∈ {0}
i ∈ {99}, x ∈ {0}



Abstract interpretation basics

Abstract each numeric variable by an interval.

int i = 100;
int x = 0;
while(i > 1) {
i--;

}
int x = 42 / i;

▶ Abstract interpretation can prove properties. Here: no division by zero.
▶ No specification required for this property (it is implicit)

Absence of run-time errors (ARTE) is an implicit property.

i ∈ {100}
i ∈ {100}, x ∈ {0}

i ∈ {99}, x ∈ {0}
i ∈ [99, 100], x ∈ {0}



Abstract interpretation basics

Abstract each numeric variable by an interval.

int i = 100;
int x = 0;
while(i > 1) {
i--;

}
int x = 42 / i;

▶ Abstract interpretation can prove properties. Here: no division by zero.
▶ No specification required for this property (it is implicit)

Absence of run-time errors (ARTE) is an implicit property.

i ∈ {100}
i ∈ {100}, x ∈ {0}
i ∈ [99, 100], x ∈ {0}
i ∈ [98, 99], x ∈ {0}



Abstract interpretation basics

Abstract each numeric variable by an interval.

int i = 100;
int x = 0;
while(i > 1) {
i--;

}
int x = 42 / i;

▶ Abstract interpretation can prove properties. Here: no division by zero.
▶ No specification required for this property (it is implicit)

Absence of run-time errors (ARTE) is an implicit property.

i ∈ {100}
i ∈ {100}, x ∈ {0}

i ∈ [98, 99], x ∈ {0}
i ∈ [98, 100], x ∈ {0}



Abstract interpretation basics

Abstract each numeric variable by an interval.

int i = 100;
int x = 0;
while(i > 1) {
i--;

}
int x = 42 / i;

▶ Abstract interpretation can prove properties. Here: no division by zero.
▶ No specification required for this property (it is implicit)

Absence of run-time errors (ARTE) is an implicit property.

i ∈ {100}
i ∈ {100}, x ∈ {0}
i ∈ [98, 100], x ∈ {0}
i ∈ [97, 99], x ∈ {0}



Abstract interpretation basics

Abstract each numeric variable by an interval.

int i = 100;
int x = 0;
while(i > 1) {
i--;

}
int x = 42 / i;

▶ Abstract interpretation can prove properties. Here: no division by zero.
▶ No specification required for this property (it is implicit)

Absence of run-time errors (ARTE) is an implicit property.

i ∈ {100}
i ∈ {100}, x ∈ {0}
i ∈ [2, 100], x ∈ {0}
i ∈ [1, 99], x ∈ {0}



Abstract interpretation basics

Abstract each numeric variable by an interval.

int i = 100;
int x = 0;
while(i > 1) {
i--;

}
int x = 42 / i;

▶ Abstract interpretation can prove properties. Here: no division by zero.
▶ No specification required for this property (it is implicit)

Absence of run-time errors (ARTE) is an implicit property.

i ∈ {100}
i ∈ {100}, x ∈ {0}
i ∈ [2, 100], x ∈ {0}
i ∈ [1, 99], x ∈ {0}
i ∈ {1}, x ∈ {0}



Abstract interpretation basics

Abstract each numeric variable by an interval.

int i = 100;
int x = 0;
while(i > 1) {
i--;

}
int x = 42 / i;

▶ Abstract interpretation can prove properties. Here: no division by zero.
▶ No specification required for this property (it is implicit)

Absence of run-time errors (ARTE) is an implicit property.

i ∈ {100}
i ∈ {100}, x ∈ {0}
i ∈ [2, 100], x ∈ {0}
i ∈ [1, 99], x ∈ {0}
i ∈ {1}, x ∈ {0}
i ∈ {1}, x ∈ {42}



Abstract interpretation basics

Abstract each numeric variable by an interval.

int i = 100;
int x = 0;
while(i > 1) {
i--;

}
int x = 42 / i;

▶ Abstract interpretation can prove properties. Here: no division by zero.
▶ No specification required for this property (it is implicit)

Absence of run-time errors (ARTE) is an implicit property.

i ∈ {100}
i ∈ {100}, x ∈ {0}
i ∈ [2, 100], x ∈ {0}
i ∈ [1, 99], x ∈ {0}
i ∈ {1}, x ∈ {0}
i ∈ {1}, x ∈ {42}


invariant



Abstract interpretation basics

Abstract each numeric variable by an interval.

int i = 100;
int x = 0;
while(i > 1) {
i--;

}
int x = 42 / i;

▶ Abstract interpretation can prove properties. Here: no division by zero.
▶ No specification required for this property (it is implicit)

Absence of run-time errors (ARTE) is an implicit property.

i ∈ {100}
i ∈ {100}, x ∈ {0}
i ∈ [2, 100], x ∈ {0}
i ∈ [1, 99], x ∈ {0}
i ∈ {1}, x ∈ {0}
i ∈ {1}, x ∈ {42}


invariant



The system loop

initial
state

kernel
exit

kernel
entry

kernel
boot

user code

kernel runtime

Alternation of user code and kernel runtime.

The user code is unknown
=⇒ We abstract it by “arbitrary sequences of instructions”
(whose execution is protected by the hardware).

Main hardware protection mechanisms

▶ Memory protection
▶ Privilege level



The system loop: Empowering the attacker

initial
state

kernel
exit

kernel
entry

kernel
boot

user code♯

kernel runtime

Alternation of user code and kernel runtime.
The user code is unknown
=⇒ We abstract it by “arbitrary sequences of instructions”

(whose execution is permitted by the hardware).

Main hardware protection mechanisms

▶ Memory protection
▶ Hardware privilege level



Absence of Privilege Escalation is an implicit property

Theorem
If the system satisfies a non-trivial invariant,

then no privilege escalation is possible on that system.

Proof.
If the systems fails to self-protect, the empowered attacker can reach any state.

=⇒ APE can be verified without writing a specification.



Example kernel

initial
state

kernel
exit

kernel
entry

kernel
boot

user code♯

kernel runtime

Task *cur; Context *ctx;

runtime() {
save_context();
/* Schedule next task */
cur = cur→next;
ctx = &cur→ctx;
load_protection();
load_context();

}

struct Context { Int8 pc, sp, flags; };

struct Task {
Memory_table * mem_table;
Context ctx;
Task * next;

};



Example in-context analysis

Initial state:
a0 cur: a7 a1 ctx: a8

a2 :
Task[2]

ae c8 d5 01 a7 ae c8 d8 01 a2

Task *cur; Context *ctx;

runtime() {
save_context();
/* Schedule next task */
cur = cur→next;
ctx = &cur→ctx;
load_protection();
load_context();

}



Example in-context analysis

Initial state:
a0 cur: a7 a1 ctx: a8

a2 :
Task[2]

ae c8 d5 01 a7 ae c8 d8 01 a2

Task *cur; Context *ctx;

runtime() {
save_context();
/* Schedule next task */
cur = cur→next;
ctx = &cur→ctx;
load_protection();
load_context();

}

cur ∈ {0xa7}, ctx ∈ {0xa8}



Example in-context analysis

Initial state:
a0 cur: a7 a1 ctx: a8

a2 :
Task[2]

ae c8 d5 01 a7 ae c8 d8 01 a2

Task *cur; Context *ctx;

runtime() {
save_context();
/* Schedule next task */
cur = cur→next;
ctx = &cur→ctx;
load_protection();
load_context();

}

cur ∈ {0xa7}, ctx ∈ {0xa8}
cur ∈ {0xa7}, ctx ∈ {0xa8}



Example in-context analysis

Initial state:
a0 cur: a7 a1 ctx: a8

a2 :
Task[2]

ae c8 d5 01 a7 ae c8 d8 01 a2

Task *cur; Context *ctx;

runtime() {
save_context();
/* Schedule next task */
cur = cur→next;
ctx = &cur→ctx;
load_protection();
load_context();

}

cur ∈ {0xa7}, ctx ∈ {0xa8}
cur ∈ {0xa7}, ctx ∈ {0xa8}

cur ∈ {0xa2}, ctx ∈ {0xa8}



Example in-context analysis

Initial state:
a0 cur: a7 a1 ctx: a8

a2 :
Task[2]

ae c8 d5 01 a7 ae c8 d8 01 a2

Task *cur; Context *ctx;

runtime() {
save_context();
/* Schedule next task */
cur = cur→next;
ctx = &cur→ctx;
load_protection();
load_context();

}

cur ∈ {0xa7}, ctx ∈ {0xa8}
cur ∈ {0xa7}, ctx ∈ {0xa8}

cur ∈ {0xa2}, ctx ∈ {0xa8}
cur ∈ {0xa2}, ctx ∈ {0xa3}



Example in-context analysis

Initial state:
a0 cur: a7 a1 ctx: a8

a2 :
Task[2]

ae c8 d5 01 a7 ae c8 d8 01 a2

Task *cur; Context *ctx;

runtime() {
save_context();
/* Schedule next task */
cur = cur→next;
ctx = &cur→ctx;
load_protection();
load_context();

}

cur ∈ {0xa7}, ctx ∈ {0xa8}
cur ∈ {0xa7}, ctx ∈ {0xa8}

cur ∈ {0xa2}, ctx ∈ {0xa8}
cur ∈ {0xa2}, ctx ∈ {0xa3}
cur ∈ {0xa2}, ctx ∈ {0xa3}
and kernel is protected



Example in-context analysis

Initial state:
a0 cur: a7 a1 ctx: a8

a2 :
Task[2]

ae c8 d5 01 a7 ae c8 d8 01 a2

Task *cur; Context *ctx;

runtime() {
save_context();
/* Schedule next task */
cur = cur→next;
ctx = &cur→ctx;
load_protection();
load_context();

}

cur ∈ {0xa7}, ctx ∈ {0xa8}
cur ∈ {0xa7}, ctx ∈ {0xa8}

cur ∈ {0xa2}, ctx ∈ {0xa8}
cur ∈ {0xa2}, ctx ∈ {0xa3}
cur ∈ {0xa2}, ctx ∈ {0xa3}
and kernel is protected

user code♯



Example in-context analysis

Initial state:
a0 cur: a7 a1 ctx: a8

a2 :
Task[2]

ae c8 d5 01 a7 ae c8 d8 01 a2

Task *cur; Context *ctx;

runtime() {
save_context();
/* Schedule next task */
cur = cur→next;
ctx = &cur→ctx;
load_protection();
load_context();

}

cur ∈ {0xa7}, ctx ∈ {0xa8}

cur ∈ {0xa2}, ctx ∈ {0xa8}
cur ∈ {0xa2}, ctx ∈ {0xa3}
cur ∈ {0xa2}, ctx ∈ {0xa3}
and kernel is protected

user code♯

cur ∈ {0xa7, 0xa2}, ctx ∈ {0xa8, 0xa3}



Example in-context analysis

Initial state:
a0 cur: a7 a1 ctx: a8

a2 :
Task[2]

ae c8 d5 01 a7 ae c8 d8 01 a2

Task *cur; Context *ctx;

runtime() {
save_context();
/* Schedule next task */
cur = cur→next;
ctx = &cur→ctx;
load_protection();
load_context();

}

cur ∈ {0xa2}, ctx ∈ {0xa8}
cur ∈ {0xa2}, ctx ∈ {0xa3}
cur ∈ {0xa2}, ctx ∈ {0xa3}
and kernel is protected

user code♯

cur ∈ {0xa7, 0xa2}, ctx ∈ {0xa8, 0xa3}
cur ∈ {0xa7, 0xa2}, ctx ∈ {0xa8, 0xa3}



Example in-context analysis

Initial state:
a0 cur: a7 a1 ctx: a8

a2 :
Task[2]

ae c8 d5 01 a7 ae c8 d8 01 a2

Task *cur; Context *ctx;

runtime() {
save_context();
/* Schedule next task */
cur = cur→next;
ctx = &cur→ctx;
load_protection();
load_context();

}

cur ∈ {0xa2}, ctx ∈ {0xa3}
cur ∈ {0xa2}, ctx ∈ {0xa3}
and kernel is protected

user code♯

cur ∈ {0xa7, 0xa2}, ctx ∈ {0xa8, 0xa3}
cur ∈ {0xa7, 0xa2}, ctx ∈ {0xa8, 0xa3}

cur ∈ {0xa2, 0xa7}, ctx ∈ {0xa3, 0xa8}



Example in-context analysis

Initial state:
a0 cur: a7 a1 ctx: a8

a2 :
Task[2]

ae c8 d5 01 a7 ae c8 d8 01 a2

Task *cur; Context *ctx;

runtime() {
save_context();
/* Schedule next task */
cur = cur→next;
ctx = &cur→ctx;
load_protection();
load_context();

}

cur ∈ {0xa2}, ctx ∈ {0xa3}
and kernel is protected

user code♯

cur ∈ {0xa7, 0xa2}, ctx ∈ {0xa8, 0xa3}
cur ∈ {0xa7, 0xa2}, ctx ∈ {0xa8, 0xa3}

cur ∈ {0xa2, 0xa7}, ctx ∈ {0xa3, 0xa8}
cur ∈ {0xa2, 0xa7}, ctx ∈ {0xa3, 0xa8}



Example in-context analysis

Initial state:
a0 cur: a7 a1 ctx: a8

a2 :
Task[2]

ae c8 d5 01 a7 ae c8 d8 01 a2

Task *cur; Context *ctx;

runtime() {
save_context();
/* Schedule next task */
cur = cur→next;
ctx = &cur→ctx;
load_protection();
load_context();

} user code♯

cur ∈ {0xa7, 0xa2}, ctx ∈ {0xa8, 0xa3}
cur ∈ {0xa7, 0xa2}, ctx ∈ {0xa8, 0xa3}

cur ∈ {0xa2, 0xa7}, ctx ∈ {0xa3, 0xa8}
cur ∈ {0xa2, 0xa7}, ctx ∈ {0xa3, 0xa8}
cur ∈ {0xa2, 0xa7}, ctx ∈ {0xa3, 0xa8}
and kernel is protected



Example in-context analysis

Binsec/Codex can verify APE and ARTE of
such small kernels with 0 lines of annotations.

Abstractions we use:
▶ Control flow: Incremental CFG recovery
▶ Values: Non-relational numeric domains with symbolic relational information
▶ Memory: Byte-level memory manipulation
▶ Concurrency: Flow-insensitive abstraction of shared memory zones



Shortcomings of in-context analyses

The method is:
▶ Not generic: Cannot analyze kernel independently from the applications
▶ Not scalable: 1000 tasks =⇒ 1000 addresses to enumerate.

Key idea
Part of memory needs to be summarized.
We summarize task data using types.



Type system: a few examples

Types refined with predicates.

type Flags = Int8 with
(self & PRIVILEGED) == 0

type Context = struct {
Int8 pc; Int8 sp;
Flags flags;

}

type Task = struct {
Memory_table* mem_table;
Context ctx;
Task* next;

}

Each type t has an interpretation LtM as a set
of values.
E.g.

LTask∗M = {0xa2, 0xa7}LFlagsM = {x | x & PRIVILEGED = 0}



Type system: a few examples

Types refined with predicates.

type Flags = Int8 with
(self & PRIVILEGED) == 0

type Context = struct {
Int8 pc; Int8 sp;
Flags flags;

}

type Task = struct {
Memory_table* mem_table;
Context ctx;
Task* next;

}

Each type t has an interpretation LtM as a set
of values.
E.g.

LTask∗M = {0xa2, 0xa7}LFlagsM = {x | x & PRIVILEGED = 0}



Example parameterized analysis

Initial state:
a0 cur: a7 a1 ctx: a8

a2 :
Task[2]

ae c8 d5 01 a7 ae c8 d8 01 a2

Task *cur; Context *ctx;

runtime() {
save_context();
/* Schedule next task */
cur = cur→next;
ctx = &cur→ctx;
load_protection();
load_context();

}

LTask∗M = {0xa2, 0xa7}LContext∗M = {0xa3, 0xa8}



Example parameterized analysis

Initial state:
a0 cur: a7 a1 ctx: a8

a2 :
Task[2]

ae c8 d5 01 a7 ae c8 d8 01 a2

Task *cur; Context *ctx;

runtime() {
save_context();
/* Schedule next task */
cur = cur→next;
ctx = &cur→ctx;
load_protection();
load_context();

}

LTask∗M = {0xa2, 0xa7}LContext∗M = {0xa3, 0xa8}

cur ∈ LTask∗M, ctx ∈ LContext∗M



Example parameterized analysis

Initial state:
a0 cur: a7 a1 ctx: a8

a2 :
Task[2]

ae c8 d5 01 a7 ae c8 d8 01 a2

Task *cur; Context *ctx;

runtime() {
save_context();
/* Schedule next task */
cur = cur→next;
ctx = &cur→ctx;
load_protection();
load_context();

}

LTask∗M = {0xa2, 0xa7}LContext∗M = {0xa3, 0xa8}

cur ∈ LTask∗M, ctx ∈ LContext∗M
cur ∈ LTask∗M, ctx ∈ LContext∗M



Example parameterized analysis

Initial state:
a0 cur: a7 a1 ctx: a8

a2 :
Task[2]

ae c8 d5 01 a7 ae c8 d8 01 a2

Task *cur; Context *ctx;

runtime() {
save_context();
/* Schedule next task */
cur = cur→next;
ctx = &cur→ctx;
load_protection();
load_context();

}

LTask∗M = {0xa2, 0xa7}LContext∗M = {0xa3, 0xa8}

cur ∈ LTask∗M, ctx ∈ LContext∗M
cur ∈ LTask∗M, ctx ∈ LContext∗M
cur ∈ LTask∗M, ctx ∈ LContext∗M



Example parameterized analysis

Initial state:
a0 cur: a7 a1 ctx: a8

a2 :
Task[2]

ae c8 d5 01 a7 ae c8 d8 01 a2

Task *cur; Context *ctx;

runtime() {
save_context();
/* Schedule next task */
cur = cur→next;
ctx = &cur→ctx;
load_protection();
load_context();

}

LTask∗M = {0xa2, 0xa7}LContext∗M = {0xa3, 0xa8}

cur ∈ LTask∗M, ctx ∈ LContext∗M
cur ∈ LTask∗M, ctx ∈ LContext∗M
cur ∈ LTask∗M, ctx ∈ LContext∗M
cur ∈ LTask∗M, ctx ∈ LContext∗M



Example parameterized analysis

Initial state:
a0 cur: a7 a1 ctx: a8

a2 :
Task[2]

ae c8 d5 01 a7 ae c8 d8 01 a2

Task *cur; Context *ctx;

runtime() {
save_context();
/* Schedule next task */
cur = cur→next;
ctx = &cur→ctx;
load_protection();
load_context();

}

LTask∗M = {0xa2, 0xa7}LContext∗M = {0xa3, 0xa8}

cur ∈ LTask∗M, ctx ∈ LContext∗M
cur ∈ LTask∗M, ctx ∈ LContext∗M
cur ∈ LTask∗M, ctx ∈ LContext∗M
cur ∈ LTask∗M, ctx ∈ LContext∗M
cur ∈ LTask∗M, ctx ∈ LContext∗M
and kernel is protected



Example parameterized analysis

Initial state:
a0 cur: a7 a1 ctx: a8

a2 :
Task[2]

ae c8 d5 01 a7 ae c8 d8 01 a2

Task *cur; Context *ctx;

runtime() {
save_context();
/* Schedule next task */
cur = cur→next;
ctx = &cur→ctx;
load_protection();
load_context();

}

LTask∗M = {0xa2, 0xa7}LContext∗M = {0xa3, 0xa8}

cur ∈ LTask∗M, ctx ∈ LContext∗M
cur ∈ LTask∗M, ctx ∈ LContext∗M
cur ∈ LTask∗M, ctx ∈ LContext∗M
cur ∈ LTask∗M, ctx ∈ LContext∗M
cur ∈ LTask∗M, ctx ∈ LContext∗M
and kernel is protected

user code♯



Differentiated handling of boot and runtime code

▶ Type-based analysis verifies the preservation of the invariant
▶ But the boot code establishes that invariant

Based on this, we

1. Perform a parameterized analysis of the runtime

2. And an in-context analysis of the boot code

3. Check that the state after boot matches the invariant.

In-context static analysis Parameterized static analysis

kernel
exit

user code
+ runtime

initial
state

boot
code



Experimental evaluation: Real-life effectiveness

Case study 1: Asterios

▶ Industrial microkernel used in industrial
settings

▶ Version: port to an ARM quad-core
▶ 329 functions, ~10,000 instructions
▶ Protection using page tables.

2 versions
▶ beta version: 1 vulnerability
▶ v1 version: vulnerability fixed

Specific = restriction on stack sizes

Proved APE and ARTE in 430 s.
58 lines of annotations.



Experimental evaluation: Genericity

Case study 2: EducRTOS

▶ Small academic OS developed for
teaching purposes

▶ Both separation kernel and real-time
OS, dynamic thread creation

▶ 1,200 x86 instructions.
▶ Protection by segmentation.

Proved APE and ARTE on 96 variants.
Varying parameters:
▶ compiler (GCC/Clang),

optimization flags
▶ scheduling algorithm (EDF/FP)

dynamic thread creation (on/off)
…

Verification time: from 1.6 s to 73 s.
14 lines of annotations.



Experimental evaluation: Automation and Scalability

We compare

▶ fully automated in-context
analysis vs parameterized
analysis (12 lines of annotations)

▶ for a simple variant of
EducRTOS

▶ with varying numbers of tasks.

0.1

1

10

100

1000

1 10 100 1000 10000
0.1

1

10

100

tim
e
(s
)

m
em
.u
sa
ge
(G
B)

number of tasks N

Parameterized (time)
Parameterized (mem)

In-context (time)
In-context (mem)

Time and space complexity of parameterized analysis
is almost linear
In-context verification is quadratic



First Conclusion

Binsec/Codex formally verifies embedded kernels (absence of run-time error and absence of
privilege escalation)
▶ from the executable
▶ with a low annotation burden.

We address existing limitations:
▶ We allow parameterized verification
▶ We handle unbounded loops (necessary for RT scheduling)
▶ We infer the kernel invariants (instead of only checking them)

=⇒ Key enabler for more automated verification of larger systems.

https://binsec.github.io/

https://binsec.github.io/


Followup: Type-based abstract interpretation
[RTAS 2021 best paper, VMCAI 2022, Thèses O. Nicole & J. Simonnet, EMASS ANR project]

Verifying type safety using abstract interpretation
+ Encompasses memory safety

▶ Still 70% of the vulnerabilities in the wild
▶ An alternative to rewriting in Rust or Microsoft Checked C

+ Cheap analyses operation for quite strong memory invariants
▶ Allows precise handling of code performing dynamic memory allocation

+ Familar abstraction easily tunable and understandable by the user
▶ Recovering types is a key step in reverse engineering.

+ Type is the abstraction for modular development→modular analysis
+ Gracefully handles analyses imprecision

▶ Provides the necessary safeguards to complete abstract interpretation of machine code .
+ A useful base to combine with other memory abstractions

▶ Array abstractions for array types, shape abstractions for recursive types, variant
abstraction for unions, etc.

▶ Key successes:
▶ 0 alarms when verifying AsteriOS (low-level OS code, variable memory)
▶ Good results on challenging benchmarks (data structure libraries, Emacs…)
▶ Makes static analysis of machine code doable on a variety of benchmarks


	Presentation
	Verification principle
	Parameterized analysis
	Experimental evaluation

