list
]

Fault Injection Vulnerability Characterization by
Inference of Robust Reachability Constraints

Yanis Sellamil2, Guillaume Girol?, Frédéric Recoules?, Damien Couroussél, Sébastien Bardin?

1 Univ. Grenoble Alpes, CEA List, France

2 Université Paris-Saclay, CEA List, France

' B INSTITUT R
CARNOT H.«.&A université
| ‘ CEA LIST Grenoble Alpes PARIS-SACLAY

Fault Injection Attacks

Fault Injection Attacks

- Apparently safe program

- Physical perturbation of the system

« Changes the program behavior > Vulnerability

« Goal: Detect these vulnerabilities

Examples
- Power glitches, clock glitches
- Laser perturbation

- EM pulse

fault

Wordl —

Compare

Word2 —

@ Fault Injection Vulnerability Characterization by Inference of Robust Reachability Constraints

Accept

Reject

21/03/2024

Vulnerability Detection

Input Set

Can we find a vulnerable input?

FAULTED .
?
oROGRAM | —— Vulnerability

Vulnerable Inputs Vulnerable Input

@ Fault Injection Vulnerability Characterization by Inference of Robust Reachability Constraints 21/03/2024 3

Possible Solution: Simulation

Simulation

- From a given set of possible inputs

- Execute/Simulate the program on each input

- Check if the input leads to the targeted bug

Advantages

- Very fast Input ———>
Extended Simulation / Fuzzing

- Improves coverage

« Important time consumption

- Results may be hard to exploit

@ Fault Injection Vulnerability Characterization by Inference of Robust Reachability Constraints

FAULTED
PROGRAM

—>

21/03/2024

Execution
Result

The Issue

Fault Injection may lead to vulnerabilities that
depend on the input state

- Cannot be reliably triggered with program
execution

« No information when no vulnerability is found

- A reported vulnerability may have been caused
by (bad) luck

@ Fault Injection Vulnerability Characterization by Inference of Robust Reachability Constraints 21/03/2024

Possible Solution:
Symbolic Execution

Define a Target Location in a program |

« EXxpress program execution as logic constraints
« One formula for each possible path containing |

« Let program inputs be free variables

- Use a logic constraints solver (SMT-Solver) to
look for assignments of free variables satisfying

the reachability predicate

Program

@ Fault Injection Vulnerability Characterization by Inference of Robust Reachability Constrallts

\ 4

SE

path

Input
]SAT

a

\ 4

SMT

UNSAT

A

Algorithm 1: VerifyPin(user, card)

Input: user: user input, card: card pin
Output: status: authentication iff true
status <— 1;

dif f+ L;

for i =0;7 < 4;i++ do

L if user[i] # card[i] then

(G R I

| diff + T;

6 if i =4 A-diff then
7 | status < T; < Target AND user != card
8 return status;

Algorithm 2: VerifyPinSMT' Constraints

Input: (declare-var user), (= card card-value)
Output: SAT (user) /UNSAT

= status_0 false);

= diff_0 false);

=10 0);

= user[i_0] card[i_0]):

i1 (+ 1.0 1));

= user[i_1] card[i_1]):

=1 2 (+ 1_1 1)):

= user[i1_2] card[i_2]);

(=13 (+ 1.2 1)):

(distinct user[i_1] card[i_11);
(= diff_1 true):

12 (=i _4 (+ i_3 1));

13 (and (= i_4 4) (not diff_1));

4 (distinct (user card)):

C W NS T e W N =
Il

[Er——
= O

Symbolic Execution

Advantages Issues
- The complete input state is evaluated - Reported vulnerabilities may be infeasible in
practice

- No false positives
- Usually reports a lot of vulnerabilities

- Complete for bounded verification

@ Fault Injection Vulnerability Characterization by Inference of Robust Reachability Constraints 21/03/2024

Main Problem

Input Set
We report a vulnerability on one vulnerable
input only

This says nothing on other possible
vulnerable inputs or on the ability to
produce this input

We need an automated method to
characterize the set of vulnerable inputs

Vulnerable Inputs

Vulnerable Input

@ Fault Injection Vulnerability Characterization by Inference of Robust Reachability Constraints 21/03/2024

Robust Reachability
[Girol, Farinier, Bardin: CAV 2021]

ldea

- Partition of the input space
- What is controlled
« What is uncontrolled

Focus: Reliable Bugs

controlled uncontrolled
« Controlled input that triggers the bug independently of
the value of the uncontrolled inputs
d c V u vulnerability
Extension of Reachability and Symbolic Execution \

Robustly Reachable?

@ Fault Injection Vulnerability Characterization by Inference of Robust Reachability Constraints 21/03/2024

Remaining Problem

Robust Reachability is Too Strong

« May miss vulnerabilities that happen always except in
a few corner cases

The problem is unchanged for controlled variables

- We only generate one controlled input for which
- The vulnerability is replicable
- We cannot conclude for other inputs

@ Fault Injection Vulnerability Characterization by Inference of Robust Reachability Constraints

21/03/2024

10

Proposal: Robust Reachability Constraints

Definition

- Predicate P on program input sufficient to have Robust

Reachability
Advantages
- Part of the Robust Reachability framework
controlled uncontrolled
- Allows precise characterization
= I VY u P(c, u) = vulnerability
How to Automatically Generate Such Constraints? \

Robustly Reachable?

@ Fault Injection Vulnerability Characterization by Inference of Robust Reachability Constraints 21/03/2024 11

Contributions

- New program-level abduction algorithm for Robust Reachability Constraints Inference
- Extends and generalizes Robustness, made more practical
- Adapts and generalizes theory-agnostic logical abduction algorithm
- Efficient optimization strategies for solving practical problems

- Implementation of a restriction to Reachability and Robust Reachability
« First evaluation of software verification and security benchmarks
- Detailed vulnerability characterization analysis in a fault injection security scenario

Target: Computation of ¢ such that 3 C controlled value,V U uncontrolled value, (C,U) = reach(C,U)

@ Fault Injection Vulnerability Characterization by Inference of Robust Reachability Constraints 21/03/2024 12

Abduction of Robust Reachability Constraints

Abductive Reasoning
[Josephson and Josephson, 1994]

« Find missing precondition of unexplained goal

« Compute ¢y In Py A Py E P

@ Fault Injection Vulnerability Characterization by Inference of Robust Reachability Constraints 21/03/2024

13

Abduction of Robust Reachability Constraints

Abductive Reasoning
[Josephson and Josephson, 1994]

« Find missing precondition of unexplained goal

« Compute ¢y In Py A Py E P

Theory-Specific Abduction
[Bienvenu 2007, Tourret et. al. 2017]

- Handle a single theory

Specification Synthesis

[Albarghouthi et. al. 2016, Calcagno et. al. 2009,
Zhou et. al. 2021]

« White-box program analysis

@ Fault Injection Vulnerability Characterization by Inference of Robust Reachability Constraints 21/03/2024

13

Abduction of Robust Reachability Constraints

Abductive Reasoning Theory-Agnostic First-order Abduction
[Josephson and Josephson, 1994] [Echenim et al. 2018, Reynolds et al. 2020]

« Find missing precondition of unexplained goal - Efficient procedures

« Compute ¢y in dpy A Py E g - Genericity

Theory-Specific Abduction
[Bienvenu 2007, Tourret et. al. 2017]

- Handle a single theory

Specification Synthesis

[Albarghouthi et. al. 2016, Calcagno et. al. 2009,
Zhou et. al. 2021]

« White-box program analysis

@ Fault Injection Vulnerability Characterization by Inference of Robust Reachability Constraints 21/03/2024

13

Abduction of Robust Reachability Constraints

Abductive Reasoning Theory-Agnostic First-order Abduction
[Josephson and Josephson, 1994] [Echenim et al. 2018, Reynolds et al. 2020]

« Find missing precondition of unexplained goal Efficient procedures

« Compute ¢y in dpy A Py E g - Genericity
Theory-Specific Abduction Our Proposal: Adapt Theory-Agnostic Abduction
[Bienvenu 2007, Tourret et. al. 2017] Algorithm to Compute Program-level Robust

: Reachability Constraints
- Handle a single theory ity !

. _ . p Jevel
Specification Synthesis rogram-leve

[Albarghouthi et. al. 2016, Calcagno et. al. 2009, - Generic
Zhou et. al. 2021]

« White-box program analysis

@ Fault Injection Vulnerability Characterization by Inference of Robust Reachability Constraints 21/03/2024 13

Our Solution (Framework)

g Inference Language _
(Set of Candidates) Abduction Procedure

— P Program

l// Target Trace Predicate

&Z[c Memory Partition

@ Fault Injection Vulnerability Characterization by Inference of Robust Reachability Constraints 21/03/2024

Our Solution (Framework)

g Inference Language _
(Set of Candidates) Abduction Procedure

— P Program

select candidate

l// Target Trace Predicate

&Z[c Memory Partition

@ Fault Injection Vulnerability Characterization by Inference of Robust Reachability Constraints 21/03/2024

Our Solution (Framework)

=~
g Inference Language _
(Set of Candidates) Abduction Procedure
S
— P Program
select candidate
l// Target Trace Predicate =
&Z[c Memory Partition S
&
3 not solution
solution » Robust Reachability Constraints

@ Fault Injection Vulnerability Characterization by Inference of Robust Reachability Constraints 21/03/2024 14

Our Solution (Framework)

g Inference Language _
(Set of Candidates) Abduction Procedure

— P Program

select candidate

»
»

l// Target Trace Predicate

&Z[c Memory Partition

alepipued 1sa1
additional info

not solution

n

solution » Robust Reachability Constraints

@ Fault Injection Vulnerability Characterization by Inference of Robust Reachability Constraints 21/03/2024 14

Our Solution (Framework)

g Inference Language
(Set of Candidates)

— P Program
l// Target Trace Predicate

&Z[c Memory Partition

Abduction Procedure

select candidate

»
»

alepipued 1sa1
additional info

<
<«

not solution

S
L
L

n

QS
Ll
<

solution

Oracles on Trace Properties
- Robust property queries 03V
« Non-robust property queries 033

-« Can accomodate various tools
(SE, BMC, Incorrectness, ...)

@ Fault Injection Vulnerability Characterization by Inference of Robust Reachability Constraints

» Robust Reachability Constraints

21/03/2024 14

Theoretical Results

Algorithm 2: ARCINFER(G, — p, i, . A prunef)

Input: G: inference language, —p: program, y: prop, : prop breaking , Ac: controlled I h eo re rT] R el I I ar kS

ariables, prunef: strategy flags
‘Qutput: R: sufficient constraints, N: necessary constraints, U: breaking constraints
Note: @32 trace property oracle, 3 robust trace property oracle
1if T,5 — 033 (=p, ¢, T) then // ensure ¥ satisfiable

Y e el LTSI o Termination « Generic procedure definition with

s | while g, ¢, Sy 5 «— NEXTRO(G. —p, . . Ac, V. RN, U, prunef) do /7 explore

5 if 8 and T, s « 0?3 (—p, |, $) then /1 ensure ¢ satisfiable under ¢ OraCIe ue rIeS abstractl On
s Ve Vu{sk // new trace example .

7 if 0% (—p, A, §1,) then // check candidate ¢ ° < O r reCtI O n

s Re— Anin(RU{d}) // update and minimize R
a

if 2033 (—p, . ~(V e) then // check weakest

0 mT e . Completeness (wrt Oracle) + The previously described strategies
2| | T 1 e sy v P can be activated/deactivated

16 L N — NU{gx} // new necessary constraint

o | o « Minimality (wrt Inference Language -
y(guage) Can be applied to a larger range of

e e o \WWeakest constraint generation if program properties (reachability,

variables, V: examples of input states of —, ying i, R: known sufficient

known necessary constraints, U known breaking constraints,

s o e possible safety, hypersafety)

sufficient flag
Note: @32 oracle for trace property satisfaction, @?": oracle for robust trace property
satisfaction

1 Ve—; // init. counter-examples
2 for g € browse(G, V) if prunef .browse else G do // get candidate from G [] If SMT—SOIVerS are used as OraCleS’

3 @ gy A :“WA-‘,MG,MK,-.N, @' if prunef.nec else ¢g; // add nec. constraints
1 | if ¢ is unsatifiable then

| L connne e s can be used an 3V abduction solver

& | ifprunef.cex and3m X € V¢ A ylx = m is satisfiable then

7 L continue; // skip: sat. by counter-example
s | if 3¢, € B¢ = é, then

o [continue; // skip: stronger than known suff. constraint
10 if prunef.nec and 3¢, € U, §, [¢ then

n L continue; // skip: weaker than known break. constraint
2 | if prunef.nec and (/g e ¢ha) E ¢ then

13 | continue; // skip: weaker than known nec. constraint
w | ifprunef.cex and T,cex «— O (—p X, 1,$) for X © A\ Ac then

15 V e— VU {cex}X; #/ new counter-example
16 yield ¢, ¢, prunef.nec, L; /¢ forward for nec. check
n else

w || yield ¢, prunef .nec, T; 4/ forward for nec. and suff. checks

Fault Injection Vulnerability Characterization by Inference of Robust Reachability Constraints 21/03/2024

Experimental Evaluation: Characterizing Fault

Injection Attacks Vulnerabilities

Implementation & BINSEC
« (Robust) Reachability on binaries

« Tool: BINSEC [Djoudi and Bardin 2015]
« Tool: BINSEC/RSE [Girol at. al. 2020]

Prototype
- PyAbd, Python implementation of the procedure

- Candidates: Conjunctions of equalities and
disequalities on memory bytes

@ Fault Injection Vulnerability Characterization by Inference of Robust Reachability Constraints

21/03/2024

16

Benchmark: FISSC

FISSC VerifyPINs Example

#ifdef LAZART

® COIIeCtion Of VerifyPIN C implementat|0ns, inline BOOL byteArrayCompare(UBYTE* al, UBYTE* a2) _ attribute__((always_inline))
. . . . #else
protected agalnst faUIt'InJeCtlon attaCk BOOL NOINLINE_BAC byteArrayCompare(UBYTE* al, UBYTE* a2)
#endif
- . . {
- Reachability: location of incorrect auth int 5 = o;

BOOL status = BOOL_FALSE;
BOOL diff = BOOL_FALSE;
Setu p for(i = 0; 1 < PIN_SIZE; i++)
if(al[i] != a2[i]) diff = BOOL_TRUE;
if((i == PIN_SIZE) & (diff == BOOL_FALSE)){

- Compile source to initial binary I begin_secure_('stecounter;
//__end__secure__("stepCounter");
) SImUIate 1 InStrUCtlon Sklp faUIt InJeCtlon by return status;

program mutation }

void verifyPIN_A()
{

- Select 719 reachable mutant programs authenticated - B00L_FALSE;

if(g_ptc > @) {

- Look for constraints on PIN inputs that lead to an ..., =@ merereesemn s = smn o

//__begin__secure__("stepCounter”);

authentication with a wrong PIN £ ptc - gptc_aniT;

g_authenticated = BOOL_TRUE; // Authentication();
//__end__secure__("stepCounter");

¥

else {
g_ptc--;
¥

@ Fault Injection Vulnerability Characterization by Inference of Robust Reachability Constraints 21/03/2024

Instruction Skip on the FISSC VerifyPINs

Evaluation

10 Source VerifyPIN

l Compilation (arm-gcc —-00, -0O1, -02, -03, -0s)

50 Binary VerifyPIN

\ 4

Fault Injection Simulation (fistic, 1 instuction skip)

4810 Binary Mutants

Configuration generation

PyAbd

gEMU gEMU* BINSEC BINSEC-RSE
Result Result Result Result

@ Fault Injection Vulnerability Characterization by Inference of Robust Reachability Constraints

l Evaluation

Result

21/03/2024

18

Inference Languages

Program Variables Two Inference Languages
Zﬂas 25"[329 Z(VS, Z(ng - One with equalities and disequalities (Eg)
Equalities « One with added inequalities (Ig)
*ag = *ag *a3y = *ajy,
*dg = Ug *d32 = U32
Register-Memory Bytes Equalities Controlled Variables

*a3; = 0x000000: (+as) - Recovered from the Symbolic Execution Queries

*d3, = OXQ00000:v) .
32 8 - One setup with controlled variables]

Inequalities, Negation, Conjunction

, - One setup without]
*ag < *kdg
— (nliteral)
*Q3; < *al,
xag < Ug (constraint) A {constraint)

@ Fault Injection Vulnerability Characterization by Inference of Robust Reachability Constraints 21/03/2024

Results: Generating Constraints

FIssc (Eg) FIssc (Ig)

[| O [| O

programs 719 719 719 719

of robust cases 129 118 129 118
of sufficient rrc 359 598 351 589
of weakest rrc 262 526 261 518

Inference languages

- (dis-)Equality between memory bytes (Eg)

-+ Inequality between memory bytes (Ig) — More expressivity but more candidates

We can find more reliable vulnerabilities than Robust Symbolic Execution

@ Fault Injection Vulnerability Characterization by Inference of Robust Reachability Constraints

21/03/2024

20

Results: Characterization

PyABp® PvABD' BINSEC/RSE BINsEc QEMU QEMU+L

unknown 170 170 273 170 243 284

not vulnerable (0 input) 4414 4042 4419 3921 4398 4220
vulnerable (> 1 input) 226 598 118 719 169 306
> 0.0001% 226 598 118 - - 306

> 0.01% 209 582 118 - — 281

> 0.1% 173 514 118 - — 210

> 1.0% 167 472 118 - — 199

> 5.0% 166 471 118 - — 196

> 10.0% 118 401 118 - — 148

> 50.0% 118 401 118 - — 135

100.0% 118 399 118 - - 135

Non-PIN input state |

is not satisfied

Non-PIN input state
is satisfied

@ Fault Injection Vulnerability Characterization by Inference of Robust Reachability Constraints

21/03/2024

21

Results: Characterization

PyABp® PvABD' BINSEC/RSE BINsEc QEMU QEMU+L

unknown 170 170 273 170 243 284

not vulnerable (0 input) 4414 4042 4419 3921 4398 4220
vulnerable (> 1 input) 226 598 118 719 j&—169 366
> 0.0001% 226 598 118 - - 306

> 0.01% 209 582 118 - — 281

> 0.1% 173 514 118 - — 210

> 1.0% 167 472 118 - — 199

> 5.0% 166 471 118 - — 196

> 10.0% 118 401 118 - — 148

> 50.0% 118 401 118 - — 135

100.0% 118 399 118 - - 135

Non-PIN input state |

is not satisfied

Non-PIN input state
is satisfied

@ Fault Injection Vulnerability Characterization by Inference of Robust Reachability Constraints

Many reported
vulnerabilities

21/03/2024

21

Results: Characterization

PyABp® PvABD' BINSEC/RSE BINsEc QEMU QEMU+L

unknown 170 170 273 170 243 284

not vulnerable (0 input) 4414 4042 4419 3921 4398 4220
vulnerable (> 1 input) 226 598 118 719 f—+69 “stirs Many reported
vulnerabilities

> 0.0001% 226 598 118 - - 306

> 0.01% 209 582 118 - - 281

> 0.1% 173 514 118 - - 210

> 1.0% 167 472 118 - - 199

> 5.0% 166 471 118 - — 196

> 10.0% 118 401 118 - — 148

> 50.0% 118 401 118 - — 135

100.0% 118 399 118 - - 135

Non-PIN input state |

is not satisfied

Non-PIN input state
is satisfied

@ Fault Injection Vulnerability Characterization by Inference of Robust Reachability Constraints

No conclusion on
more than one
input

21/03/2024

21

Results: Characterization

PyABp® PvABD' BINSEC/RSE BINsEc QEMU QEMU+L

unknown 170 170 273 170 243 284

not vulnerable (0 input) 4414 4042 4419 3921 4398 4220
vulnerable (> 1 input) 226 598 118 719 f—+69 “stirs Many reported
vulnerabilities

> 0.0001% 226 598 118 - - 306

> 0.01% 209 582 118 - - 281

> 0.1% 173 514 118 - - 210

> 1.0% 167 472 118 - - 199

> 5.0% 166 471 118 - — 196

> 10.0% 118 401 118 - — 148

> 50.0% 118 401 118 - — 135

100.0% 118 399 118 - - 135

*

Non-PIN input state |

is not satisfied

Non-PIN input state
is satisfied

@ Fault Injection Vulnerability Characterization by Inference of Robust Reachability Constraints

No conclusion on
more than one
input

No details for less
than all inputs

21/03/2024

21

Results: Characterization

PyABp® PvAB)® BINSEc/RSE BINsEc QEMU QEMU+L

unknown 170 170 273 170 243 284

not vulnerable (0 input) 4414 4042 4419 3921 4398 4220
vulnerable (> 1 input) 226 598 118 719 j&—169 366
> 0.0001% 226 598 118 — — 306

> 0.01% 209 582 118 - — 281

> 0.1% 173 514 118 - — 210

> 1.0% 167 472 118 - — 199

> 5.0% 166 471 118 - — 196

> 10.0% 118 401 118 - — 148

> 50.0% 118 401 118 - — 135

100.0% 118 399 118 - - 135

*

Non-PIN input state |

is not satisfied

Non-PIN input state
is satisfied

@ Fault Injection Vulnerability Characterization by Inference of Robust Reachability Constraints

No conclusion on
more than one

input

No details for less
than all inputs

Best characterization

Many reported
vulnerabilities

21/03/2024

21

Results: Example of Constraints

true
Authentication is always possible

e Card[0] == User[0] && User[0] ==

Authentication when first digit is 3

e User[0] == User[1] && User[0] == User[2] && User[0] == User[3] && User[0] =0

Authentication when all digits are equal and non zero

« Card[2] != User[2] && Card[3] == User[3] && User[1] ==

Authentication when we know the last digit, the 3rd is not correct and the 2" is 5.

« RO ==User[3] && User[3] == User[2] && User[3] == User[1] && User[3] == User[0]

Authentication with four time the initial value of RO

* R2=0xaa && R1 I=0x55&&R1 =0
Authentication if R2=0xaa initially and R1 distinct from both 0x55 and 0x00 initially

@ Fault Injection Vulnerability Characterization by Inference of Robust Reachability Constraints

21/03/2024

22

Analysis Time

Table 4. Analysis times (hours:minutes:seconds) for VerifyPIN (Fissc) for the analysis methods considered

in Table 3. For PYABD®'?, we report the complete analysis time (PYABD®'P), the time for returning the first

o/P O/P

constraint (PYABD,), and the time for returning the last constraint (PYABD_ ., i.e. timeouts excluded).

PyAspY? PYABDE)I{ i PYABDE/S f BINSec/RSE BiNsec QEmMU QEMU+L
average 0:16:57 0:01:53 0:02:45 0:00:13 0:00:04 0:00:01 1:08:43
median 0:01:25 0:00:46 0:00:46 0:00:06 0:00:03 0:00:01 1:11:38

@ Fault Injection Vulnerability Characterization by Inference of Robust Reachability Constraints 21/03/2024

23

Additional Results

Can be applied to any program, not necessarily
under fault injection

« Generic Framework

- Evaluation on SVComp

Detailed strategies for efficient language
exploration

- Analyses of the influence of the strategies

Generalization to trace properties

« Not limited to symbolic execution

@ Fault Injection Vulnerability Characterization by Inference of Robust Reachability Constraints

21/03/2024

24

Conclusion

Conclusion

- We propose a precondition inference technique to
improve the capabilities of Robust Reachability

- We adapt theory-agnostic abduction algorithm to 3V
formulas and apply it at program-level through oracles

- We demonstrates its capabilities on simple yet realistic
vulnerability characterization scenarii

Preconditions explain the vulnerability
Can be reused for understanding, counting, comparing

@ Fault Injection Vulnerability Characterization by Inference of Robust Reachability Constraints

& BINSEC
(hiring)

.-EE:E

e

21/03/2024 25

Conclusion

Conclusion

- We propose a precondition inference technique to
improve the capabilities of Robust Reachability

- We adapt theory-agnostic abduction algorithm to 3V
formulas and apply it at program-level through oracles

- We demonstrates its capabilities on simple yet realistic
vulnerability characterization scenarii

Preconditions explain the vulnerability
Can be reused for understanding, counting, comparing

@ Fault Injection Vulnerability Characterization by Inference of Robust Reachability Constraints

Questions?

fm BINSEC

.-EE:E

e

21/03/2024 25

PP e

—C

fm BINS

»
c
9
.
"
D
S
o

