
State Machine Issues in Network Stacks
and Application to TLS and SSH

Aina Rasoamanana

Séminaire des Étudiants et Anciens
Télécom SudParis

2025-10-23



Plan

Introduction

The Active Automata Learning Framework

Applications to TLS and SSH

Conclusion

A. Rasoamanana State Machine Issues in Network Stacks 2/20



Introduction

Plan

Introduction

The Active Automata Learning Framework

Applications to TLS and SSH

Conclusion

A. Rasoamanana State Machine Issues in Network Stacks 3/20



Introduction

Context: Specification and Implementations

▶ Network protocols are defined in specs such as RFCs
▶ They are written in English (and not in a formal language)

▶ ambiguities
▶ incomplete specifications

In this presentation, we focus on state machine issues
▶ e.g. CVE-2020-24613
▶ (server authentication bypass in TLS)

A. Rasoamanana State Machine Issues in Network Stacks 4/20



Introduction

Context: Specification and Implementations

▶ Network protocols are defined in specs such as RFCs
▶ They are written in English (and not in a formal language)

▶ ambiguities
▶ incomplete specifications

In this presentation, we focus on state machine issues
▶ e.g. CVE-2020-24613
▶ (server authentication bypass in TLS)

A. Rasoamanana State Machine Issues in Network Stacks 4/20



Introduction

CVE-2020-24613: The Flaw
Client Server

ClientHello+ ClientKeyShare ext.

ServerHello

+ ServerKeyShare ext.

EncryptedExtensions

Certificate

CertificateVerify

Finished

Finished

Application Data

In a normal TLS 1.3 message flaw
▶ the server presents its (Certificate)
▶ it proves its identity (CertificateVerify)
▶ this message contains a signature (requiring the private key)

What happens if a client accepts a connection missing the CertificateVerify?

▶ the private key is not necessary anymore for a successful handshake
▶ an attacker can impersonate any server to such a client

A. Rasoamanana State Machine Issues in Network Stacks 5/20



Introduction

CVE-2020-24613: The Flaw
Client Server

ClientHello+ ClientKeyShare ext.

ServerHello

+ ServerKeyShare ext.

EncryptedExtensions

Certificate

CertificateVerify

Finished

Finished

Application Data

In a normal TLS 1.3 message flaw
▶ the server presents its (Certificate)
▶ it proves its identity (CertificateVerify)
▶ this message contains a signature (requiring the private key)

What happens if a client accepts a connection missing the CertificateVerify?

▶ the private key is not necessary anymore for a successful handshake
▶ an attacker can impersonate any server to such a client

A. Rasoamanana State Machine Issues in Network Stacks 5/20



Introduction

CVE-2020-24613: The Flaw
Client Server

ClientHello+ ClientKeyShare ext.

ServerHello

+ ServerKeyShare ext.

EncryptedExtensions

Certificate

CertificateVerify

Finished

Finished

Application Data

In a normal TLS 1.3 message flaw
▶ the server presents its (Certificate)
▶ it proves its identity (CertificateVerify)
▶ this message contains a signature (requiring the private key)

What happens if a client accepts a connection missing the CertificateVerify?
▶ the private key is not necessary anymore for a successful handshake
▶ an attacker can impersonate any server to such a client

A. Rasoamanana State Machine Issues in Network Stacks 5/20



The Active Automata Learning Framework

Plan

Introduction

The Active Automata Learning Framework

Applications to TLS and SSH

Conclusion

A. Rasoamanana State Machine Issues in Network Stacks 6/20



The Active Automata Learning Framework

Methodology: Pipeline

Learner SUL

Process

A, B

X, Y

SUL = System Under Learning (the stack being analyzed)

Mapper
A A

XX

Contribution

Vocabulary

Data

State Machine Analyzer

Properties

OK

Bugs

A. Rasoamanana State Machine Issues in Network Stacks 7/20



The Active Automata Learning Framework

Methodology: Pipeline

Learner SUL

Process

A, B

X, Y

SUL = System Under Learning (the stack being analyzed)

Mapper
A A

XX

Contribution

Real interactions require an intermediate component
▶ sending messages one at a time
▶ using concrete messages (bytes on the wire)

Vocabulary

Data

State Machine Analyzer

Properties

OK

Bugs

A. Rasoamanana State Machine Issues in Network Stacks 7/20



The Active Automata Learning Framework

Methodology: Pipeline

Learner SUL

Process

A, B

X, Y

SUL = System Under Learning (the stack being analyzed)

Mapper
A A

XX

Contribution

Vocabulary

Data

State Machine Analyzer

Properties

OK

Bugs

A. Rasoamanana State Machine Issues in Network Stacks 7/20



The Active Automata Learning Framework

Methodology: Pipeline

Learner SUL

Process

A, B

X, Y

SUL = System Under Learning (the stack being analyzed)

Mapper
A A

XX

Contribution

Vocabulary

Data

State Machine

Analyzer

Properties

OK

Bugs

A. Rasoamanana State Machine Issues in Network Stacks 7/20



The Active Automata Learning Framework

Methodology: Pipeline

Learner SUL

Process

A, B

X, Y

SUL = System Under Learning (the stack being analyzed)

Mapper
A A

XX

Contribution

Vocabulary

Data

State Machine Analyzer

Properties

OK

Bugs

A. Rasoamanana State Machine Issues in Network Stacks 7/20



The Active Automata Learning Framework

Methodology: Pain Points

Learner SULMapper
A A

XX

Vocabulary

State Machine Analyzer

Properties

OK

Bugs

A. Rasoamanana State Machine Issues in Network Stacks 8/20



The Active Automata Learning Framework

Methodology: Pain Points

Learner SULMapper
A A

XX

Vocabulary

State Machine Analyzer

Properties

OK

Bugs

Writing a new mapper for each protocol
▶ we (almost) need a protocol implementation...
▶ which is flexible and robust
▶ where every choice is ideally clear and explicit

A. Rasoamanana State Machine Issues in Network Stacks 8/20



The Active Automata Learning Framework

Methodology: Pain Points

Learner SULMapper
A A

XX

Vocabulary

State Machine Analyzer

Properties

OK

Bugs

Handling timeouts
▶ we do not know when SUL is done talking
▶ low values lead to missed messages
▶ high values lead to inefficiency

A. Rasoamanana State Machine Issues in Network Stacks 8/20



The Active Automata Learning Framework

Methodology: Pain Points

Learner SULMapper
A A

XX

Vocabulary

State Machine Analyzer

Properties

OK

Bugs

Analyzing the state machines
▶ the resulting automata can be huge and hard to read
▶ need for automatic tools for adhoc properties

A. Rasoamanana State Machine Issues in Network Stacks 8/20



Applications to TLS and SSH

Plan

Introduction

The Active Automata Learning Framework

Applications to TLS and SSH

Conclusion

A. Rasoamanana State Machine Issues in Network Stacks 9/20



Applications to TLS and SSH

Studied Protocols

TLS
▶ the S of HTTPS
▶ one of the fundamental block of internet security

SSH
▶ remote secure shell and file copy
▶ designed to replace older cleartext protocols

A. Rasoamanana State Machine Issues in Network Stacks 10/20



Applications to TLS and SSH

Bug and Vulnerability Detection

pylstar TLS/SSH
Stack

MAPPER
TLS: scapy

SSH: from scratch

CH 160303006401...

160303003802...SH

Vocabulary (e.g. for TLS
ClientHello
ServerHello

F inished, Alert, etc.)

State Machine Analyzer

TLS: Happy Paths
SSH: Mealy

Verifier?

OK
Discrepancies
Bugs vs Vulns

A. Rasoamanana State Machine Issues in Network Stacks 11/20



Applications to TLS and SSH

Fingerprinting

pylstar TLS/SSH
Stacks

MAPPER
TLS: scapy

SSH: from scratch

CH 160303006401...

160303003802...SH

Vocabulary (e.g. for TLS
ClientHello
ServerHello

F inished, Alert, etc.)

State Machines Analyzer Fingerprints

TLS and SSH stacks actually vary in their behavior
▶ the distinguishing sequences lead to fingerprints
▶ possibly more robust than other techniques

A. Rasoamanana State Machine Issues in Network Stacks 12/20



Applications to TLS and SSH

SSH in a Nutshell (1/2)

▶ SSH means SSH-2 in this presentation
▶ SSH is a 3-layer protocol

▶ Transport: key exchange, server authentication and channel protection
▶ User Authentication
▶ Connection: multiplexing application data channels

A. Rasoamanana State Machine Issues in Network Stacks 13/20



Applications to TLS and SSH

SSH in a Nutshell (1/2)

▶ SSH means SSH-2 in this presentation

▶ SSH is a 3-layer protocol
▶ Transport: key exchange, server authentication and channel protection
▶ User Authentication
▶ Connection: multiplexing application data channels

A. Rasoamanana State Machine Issues in Network Stacks 13/20



Applications to TLS and SSH

SSH in a Nutshell (1/2)

▶ SSH means SSH-2 in this presentation
▶ SSH is a 3-layer protocol

▶ Transport: key exchange, server authentication and channel protection
▶ User Authentication
▶ Connection: multiplexing application data channels

A. Rasoamanana State Machine Issues in Network Stacks 13/20



Applications to TLS and SSH

SSH in a Nutshell (2/2)

SSHVersion

KEXINIT

DH_INIT

DH_REPLY

NEWKEYS

NEWKEYS

SERVICE REQUEST

SERVICE ACCEPT

USERAUTH REQUEST

USERAUTH SUCCESS

CHANNEL OPEN

CHANNEL OPEN CONFIRMATION

. . .

Client Server

Transport

Layer

Authentication

Layer

Connection

Layer

cleartext

encrypted

A. Rasoamanana State Machine Issues in Network Stacks 14/20



Applications to TLS and SSH

Challenges with SSH State Machine Inference

SSH is an interesting protocol

▶ more messages than TLS (20-30)
▶ more states
▶ non-deterministic behavior
▶ non-representable behavior

A typical TLS inference was in the minutes...
With SSH it can take hours or days

A. Rasoamanana State Machine Issues in Network Stacks 15/20



Applications to TLS and SSH

Challenges with SSH State Machine Inference

SSH is an interesting protocol
▶ more messages than TLS (20-30)

▶ Generic (Disconnect, ServiceRequest, Unimplemented...)
▶ Transport (KexInit, (EC)DHInit, NewKeys...)
▶ UserAuthentication (AuthRequest, AuthSuccess, AuthFailure...)
▶ Connection (ChannelOpen, ChannelData, ChannelEOF...)

▶ more states
▶ non-deterministic behavior
▶ non-representable behavior

A typical TLS inference was in the minutes...
With SSH it can take hours or days

A. Rasoamanana State Machine Issues in Network Stacks 15/20



Applications to TLS and SSH

Challenges with SSH State Machine Inference

SSH is an interesting protocol
▶ more messages than TLS (20-30)
▶ more states

▶ the Transport layer is similar to TLS
▶ the UserAuthentication layer should be rather simple
▶ the Connection layer complexity depends on the modeling
▶ after the initial handshake, keys can be refreshed

▶ non-deterministic behavior
▶ non-representable behavior

A typical TLS inference was in the minutes...
With SSH it can take hours or days

A. Rasoamanana State Machine Issues in Network Stacks 15/20



Applications to TLS and SSH

Challenges with SSH State Machine Inference

SSH is an interesting protocol
▶ more messages than TLS (20-30)
▶ more states
▶ non-deterministic behavior

▶ some stacks implement defensive timeouts during the first layers
▶ the order of some messages can vary from one run to the other

▶ non-representable behavior

A typical TLS inference was in the minutes...
With SSH it can take hours or days

A. Rasoamanana State Machine Issues in Network Stacks 15/20



Applications to TLS and SSH

Challenges with SSH State Machine Inference

SSH is an interesting protocol
▶ more messages than TLS (20-30)
▶ more states
▶ non-deterministic behavior
▶ non-representable behavior

▶ opening channels in the midst of a key refresh operation
▶ how to represent server-side timeouts in a useful way

A typical TLS inference was in the minutes...
With SSH it can take hours or days

A. Rasoamanana State Machine Issues in Network Stacks 15/20



Applications to TLS and SSH

Challenges with SSH State Machine Inference

SSH is an interesting protocol
▶ more messages than TLS (20-30)
▶ more states
▶ non-deterministic behavior
▶ non-representable behavior

A typical TLS inference was in the minutes...
With SSH it can take hours or days

A. Rasoamanana State Machine Issues in Network Stacks 15/20



Applications to TLS and SSH

Case Study: mysteressh
0

3

DISCONNECT / KEXINIT

2

NEWKEYS / KEXINIT

4

DH_REPLY / KEXINIT+EOF SRV_ACCPT_auth / KEXINIT+EOF AUTH_SUCCESS / KEXINIT+EOF AUTH_FAILURE / KEXINIT+EOF AUTH_PK_OK / KEXINIT+EOF

1

KEXINIT_DH / KEXINIT+DH_INIT

DISCONNECT / NoRSP

NEWKEYS / NoRSP

DH_REPLY / EOF SRV_ACCPT_auth / EOFAUTH_SUCCESS / EOF AUTH_FAILURE / EOF AUTH_PK_OK / EOF

KEXINIT_DH / DH_INITDISCONNECT / NoRSP

DH_REPLY / EOF NEWKEYS / EOF SRV_ACCPT_auth / EOF AUTH_SUCCESS / EOF AUTH_FAILURE / EOF AUTH_PK_OK / EOF

KEXINIT_DH / KEXINIT+DH_INIT

KEXINIT_DH / EOFDH_REPLY / EOFNEWKEYS / EOFSRV_ACCPT_auth / EOF DISCONNECT / EOFAUTH_SUCCESS / EOF AUTH_FAILURE / EOFAUTH_PK_OK / EOF

NEWKEYS / SRV_REQ(auth)AUTH_PK_OK / EOF

KEXINIT_DH / NoRSPDISCONNECT / NoRSPAUTH_FAILURE / AUTH_PW

7

AUTH_SUCCESS / NoRSP

6

SRV_ACCPT_auth / NoRSP

5

DH_REPLY / NEWKEYS

NEWKEYS / SRV_REQ(auth)+AUTH_NONE+CH_OPEN(session) AUTH_PK_OK / EOF

KEXINIT_DH / NoRSP

DISCONNECT / NoRSPAUTH_SUCCESS / NoRSPAUTH_FAILURE / AUTH_PW

9

DH_REPLY / NEWKEYS

SRV_ACCPT_auth / NoRSP

DH_REPLY / EOF AUTH_PK_OK / EOF

DISCONNECT / NoRSPAUTH_SUCCESS / NoRSPAUTH_FAILURE / AUTH_PW

10

SRV_ACCPT_auth / NoRSP

13

NEWKEYS / SRV_REQ(auth)+AUTH_NONE+CH_OPEN(session)

KEXINIT_DH / NoRSP

DH_REPLY / EOF AUTH_PK_OK / EOF

AUTH_SUCCESS / NoRSP

SRV_ACCPT_auth / NoRSPDISCONNECT / NoRSPAUTH_FAILURE / AUTH_PW

12

NEWKEYS / SRV_REQ(auth)+AUTH_NONE

KEXINIT_DH / NoRSP

DH_REPLY / EOF NEWKEYS / EOF AUTH_PK_OK / EOF

SRV_ACCPT_auth / NoRSPDISCONNECT / NoRSPAUTH_FAILURE / AUTH_PW

14

KEXINIT_DH / KEXINITAUTH_SUCCESS / CH_OPEN(session)

DH_REPLY / EOFNEWKEYS / NoRSP AUTH_PK_OK / EOF

KEXINIT_DH / NoRSPSRV_ACCPT_auth / NoRSPDISCONNECT / NoRSPAUTH_FAILURE / AUTH_PW

15

AUTH_SUCCESS / CH_OPEN(session)

DH_REPLY / EOF NEWKEYS / NoRSP AUTH_SUCCESS / EOF AUTH_FAILURE / EOFAUTH_PK_OK / EOF

KEXINIT_DH / NoRSPSRV_ACCPT_auth / NoRSPDISCONNECT / NoRSPDH_REPLY / EOF NEWKEYS / EOFAUTH_SUCCESS / EOF AUTH_FAILURE / EOF AUTH_PK_OK / EOF

KEXINIT_DH / KEXINIT

SRV_ACCPT_auth / NoRSPDISCONNECT / NoRSP

NEWKEYS / SRV_REQ(auth)+AUTH_NONE AUTH_PK_OK / EOF

KEXINIT_DH / NoRSP

AUTH_SUCCESS / NoRSP

DH_REPLY / NEWKEYS

SRV_ACCPT_auth / NoRSPDISCONNECT / NoRSPAUTH_FAILURE / AUTH_PW

DH_REPLY / EOFAUTH_PK_OK / EOF

AUTH_SUCCESS / NoRSP

SRV_ACCPT_auth / NoRSP

KEXINIT_DH / NoRSPDISCONNECT / NoRSPAUTH_FAILURE / AUTH_PW

8

NEWKEYS / SRV_REQ(auth)

DH_REPLY / EOF NEWKEYS / EOF AUTH_PK_OK / EOF

SRV_ACCPT_auth / AUTH_NONE

AUTH_SUCCESS / AUTH_NONE+CH_OPEN(session)

DISCONNECT / NoRSPAUTH_FAILURE / AUTH_PW

11

KEXINIT_DH / KEXINIT

DH_REPLY / EOF NEWKEYS / NoRSPAUTH_PK_OK / EOF

SRV_ACCPT_auth / AUTH_NONE

AUTH_SUCCESS / AUTH_NONE+CH_OPEN(session)

KEXINIT_DH / NoRSPDISCONNECT / NoRSPAUTH_FAILURE / AUTH_PW

▶ Client state machine
▶ Transport + UserAuthentication layers
▶ 8 input messages, 16 states

A. Rasoamanana State Machine Issues in Network Stacks 16/20



Applications to TLS and SSH

Early UserAuthFailure (password Flavor)

0

1

KEXINIT / KEXINIT+DH_INIT

AUTH_FAILURE / AUTH_PW

▶ If a rogue server starts the handshake...
▶ and sends an early UserAuthFailure with the

password method...

▶ the vulnerable client happily sends its password
(AUTH_PW)

▶ Problem: there was no server authentication

A. Rasoamanana State Machine Issues in Network Stacks 17/20



Applications to TLS and SSH

Early UserAuthFailure (password Flavor)

0

1

KEXINIT / KEXINIT+DH_INIT

AUTH_FAILURE / AUTH_PW

▶ If a rogue server starts the handshake...
▶ and sends an early UserAuthFailure with the

password method...
▶ the vulnerable client happily sends its password

(AUTH_PW)

▶ Problem: there was no server authentication

A. Rasoamanana State Machine Issues in Network Stacks 17/20



Applications to TLS and SSH

Early UserAuthFailure (password Flavor)

0

1

KEXINIT / KEXINIT+DH_INIT

AUTH_FAILURE / AUTH_PW

▶ If a rogue server starts the handshake...
▶ and sends an early UserAuthFailure with the

password method...
▶ the vulnerable client happily sends its password

(AUTH_PW)
▶ Problem: there was no server authentication

A. Rasoamanana State Machine Issues in Network Stacks 17/20



Conclusion

Plan

Introduction

The Active Automata Learning Framework

Applications to TLS and SSH

Conclusion

A. Rasoamanana State Machine Issues in Network Stacks 18/20



Conclusion

Ongoing and future work

Short-term, on SSH
▶ a paper on the challenges and our answers
▶ discussion with editors about strange behavior

Long-term
▶ more efficient inferences (adaptive learning, system-level tricks)
▶ more efficient analyses/visualisation

Longer-term
▶ towards automatic mappers
▶ extension to other domains

A. Rasoamanana State Machine Issues in Network Stacks 19/20



Conclusion

Ongoing and future work

Short-term, on SSH
▶ a paper on the challenges and our answers
▶ discussion with editors about strange behavior

Long-term
▶ more efficient inferences (adaptive learning, system-level tricks)
▶ more efficient analyses/visualisation

Longer-term
▶ towards automatic mappers
▶ extension to other domains

A. Rasoamanana State Machine Issues in Network Stacks 19/20



Conclusion

Ongoing and future work

Short-term, on SSH
▶ a paper on the challenges and our answers
▶ discussion with editors about strange behavior

Long-term
▶ more efficient inferences (adaptive learning, system-level tricks)
▶ more efficient analyses/visualisation

Longer-term
▶ towards automatic mappers
▶ extension to other domains

A. Rasoamanana State Machine Issues in Network Stacks 19/20



Questions

Thank you for your attention

References

[ESORICS22] Towards a Systematic and Automatic Use of State Machine Inference to Uncover Security Flaws and Fingerprint TLS Stacks. A. Rasoamanana,
OL et H. Debar, ESORICS 2022
[ARES24] Mealy Verifier: An Automated, Exhaustive, and Explainable Methodology for Analyzing State Machines in Protocol Implementations. A. Tran Van,
OL et H. Debar, ARES 2024


	Introduction
	The Active Automata Learning Framework
	Applications to TLS and SSH
	Conclusion

