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Introduction

Context: Specification and Implementations

▶ Network protocols are defined in specs such as RFCs
▶ They are written in English (and not in a formal language)

▶ ambiguities
▶ incomplete specifications

In this presentation, we focus on state machine issues
▶ e.g. CVE-2020-24613
▶ (server authentication bypass in TLS)
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Introduction

CVE-2020-24613: The Flaw
Client Server

ClientHello+ ClientKeyShare ext.

ServerHello

+ ServerKeyShare ext.

EncryptedExtensions

Certificate

CertificateVerify

Finished

Finished

Application Data

In a normal TLS 1.3 message flaw
▶ the server presents its (Certificate)
▶ it proves its identity (CertificateVerify)
▶ this message contains a signature (requiring the private key)

What happens if a client accepts a connection missing the CertificateVerify?

▶ the private key is not necessary anymore for a successful handshake
▶ an attacker can impersonate any server to such a client
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The Active Automata Learning Framework

Methodology: Pipeline

Learner SUL

Process

A, B

X, Y

SUL = System Under Learning (the stack being analyzed)

Mapper
A A

XX

Contribution

Vocabulary

Data

State Machine Analyzer

Properties

OK

Bugs
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Methodology: Pipeline

Learner SUL

Process

A, B

X, Y

SUL = System Under Learning (the stack being analyzed)

Mapper
A A

XX

Contribution

Real interactions require an intermediate component
▶ sending messages one at a time
▶ using concrete messages (bytes on the wire)

Vocabulary

Data

State Machine Analyzer

Properties

OK

Bugs
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The Active Automata Learning Framework

Methodology: Pain Points

Learner SULMapper
A A

XX

Vocabulary

State Machine Analyzer

Properties

OK

Bugs
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The Active Automata Learning Framework

Methodology: Pain Points

Learner SULMapper
A A

XX

Vocabulary

State Machine Analyzer

Properties

OK

Bugs

Writing a new mapper for each protocol
▶ we (almost) need a protocol implementation...
▶ which is flexible and robust
▶ where every choice is ideally clear and explicit
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The Active Automata Learning Framework

Methodology: Pain Points

Learner SULMapper
A A

XX

Vocabulary

State Machine Analyzer

Properties

OK

Bugs

Handling timeouts
▶ we do not know when SUL is done talking
▶ low values lead to missed messages
▶ high values lead to inefficiency
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The Active Automata Learning Framework

Methodology: Pain Points

Learner SULMapper
A A

XX

Vocabulary

State Machine Analyzer

Properties

OK

Bugs

Analyzing the state machines
▶ the resulting automata can be huge and hard to read
▶ need for automatic tools for adhoc properties
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Applications to TLS and SSH

Studied Protocols

TLS
▶ the S of HTTPS
▶ one of the fundamental block of internet security

SSH
▶ remote secure shell and file copy
▶ designed to replace older cleartext protocols
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Applications to TLS and SSH

Bug and Vulnerability Detection

pylstar TLS/SSH
Stack

MAPPER
TLS: scapy

SSH: from scratch

CH 160303006401...

160303003802...SH

Vocabulary (e.g. for TLS
ClientHello
ServerHello

F inished, Alert, etc.)

State Machine Analyzer

TLS: Happy Paths
SSH: Mealy

Verifier?

OK
Discrepancies
Bugs vs Vulns
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Applications to TLS and SSH

Fingerprinting

pylstar TLS/SSH
Stacks

MAPPER
TLS: scapy

SSH: from scratch

CH 160303006401...

160303003802...SH

Vocabulary (e.g. for TLS
ClientHello
ServerHello

F inished, Alert, etc.)

State Machines Analyzer Fingerprints

TLS and SSH stacks actually vary in their behavior
▶ the distinguishing sequences lead to fingerprints
▶ possibly more robust than other techniques
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Applications to TLS and SSH

SSH in a Nutshell (1/2)

▶ SSH means SSH-2 in this presentation
▶ SSH is a 3-layer protocol

▶ Transport: key exchange, server authentication and channel protection
▶ User Authentication
▶ Connection: multiplexing application data channels

A. Rasoamanana State Machine Issues in Network Stacks 13/20



Applications to TLS and SSH

SSH in a Nutshell (1/2)

▶ SSH means SSH-2 in this presentation

▶ SSH is a 3-layer protocol
▶ Transport: key exchange, server authentication and channel protection
▶ User Authentication
▶ Connection: multiplexing application data channels

A. Rasoamanana State Machine Issues in Network Stacks 13/20



Applications to TLS and SSH

SSH in a Nutshell (1/2)

▶ SSH means SSH-2 in this presentation
▶ SSH is a 3-layer protocol

▶ Transport: key exchange, server authentication and channel protection
▶ User Authentication
▶ Connection: multiplexing application data channels

A. Rasoamanana State Machine Issues in Network Stacks 13/20



Applications to TLS and SSH

SSH in a Nutshell (2/2)

SSHVersion

KEXINIT

DH_INIT

DH_REPLY

NEWKEYS

NEWKEYS

SERVICE REQUEST

SERVICE ACCEPT

USERAUTH REQUEST

USERAUTH SUCCESS

CHANNEL OPEN

CHANNEL OPEN CONFIRMATION

. . .

Client Server

Transport

Layer

Authentication

Layer

Connection

Layer

cleartext

encrypted
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Applications to TLS and SSH

Challenges with SSH State Machine Inference

SSH is an interesting protocol

▶ more messages than TLS (20-30)
▶ more states
▶ non-deterministic behavior
▶ non-representable behavior

A typical TLS inference was in the minutes...
With SSH it can take hours or days
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▶ Generic (Disconnect, ServiceRequest, Unimplemented...)
▶ Transport (KexInit, (EC)DHInit, NewKeys...)
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SSH is an interesting protocol
▶ more messages than TLS (20-30)
▶ more states

▶ the Transport layer is similar to TLS
▶ the UserAuthentication layer should be rather simple
▶ the Connection layer complexity depends on the modeling
▶ after the initial handshake, keys can be refreshed
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Applications to TLS and SSH

Challenges with SSH State Machine Inference

SSH is an interesting protocol
▶ more messages than TLS (20-30)
▶ more states
▶ non-deterministic behavior
▶ non-representable behavior

▶ opening channels in the midst of a key refresh operation
▶ how to represent server-side timeouts in a useful way
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Applications to TLS and SSH

Case Study: mysteressh
0

3

DISCONNECT / KEXINIT

2

NEWKEYS / KEXINIT

4

DH_REPLY / KEXINIT+EOF SRV_ACCPT_auth / KEXINIT+EOF AUTH_SUCCESS / KEXINIT+EOF AUTH_FAILURE / KEXINIT+EOF AUTH_PK_OK / KEXINIT+EOF

1

KEXINIT_DH / KEXINIT+DH_INIT

DISCONNECT / NoRSP

NEWKEYS / NoRSP

DH_REPLY / EOF SRV_ACCPT_auth / EOFAUTH_SUCCESS / EOF AUTH_FAILURE / EOF AUTH_PK_OK / EOF

KEXINIT_DH / DH_INITDISCONNECT / NoRSP

DH_REPLY / EOF NEWKEYS / EOF SRV_ACCPT_auth / EOF AUTH_SUCCESS / EOF AUTH_FAILURE / EOF AUTH_PK_OK / EOF

KEXINIT_DH / KEXINIT+DH_INIT

KEXINIT_DH / EOFDH_REPLY / EOFNEWKEYS / EOFSRV_ACCPT_auth / EOF DISCONNECT / EOFAUTH_SUCCESS / EOF AUTH_FAILURE / EOFAUTH_PK_OK / EOF

NEWKEYS / SRV_REQ(auth)AUTH_PK_OK / EOF

KEXINIT_DH / NoRSPDISCONNECT / NoRSPAUTH_FAILURE / AUTH_PW

7

AUTH_SUCCESS / NoRSP

6

SRV_ACCPT_auth / NoRSP

5

DH_REPLY / NEWKEYS

NEWKEYS / SRV_REQ(auth)+AUTH_NONE+CH_OPEN(session) AUTH_PK_OK / EOF

KEXINIT_DH / NoRSP

DISCONNECT / NoRSPAUTH_SUCCESS / NoRSPAUTH_FAILURE / AUTH_PW

9

DH_REPLY / NEWKEYS

SRV_ACCPT_auth / NoRSP

DH_REPLY / EOF AUTH_PK_OK / EOF

DISCONNECT / NoRSPAUTH_SUCCESS / NoRSPAUTH_FAILURE / AUTH_PW

10

SRV_ACCPT_auth / NoRSP

13

NEWKEYS / SRV_REQ(auth)+AUTH_NONE+CH_OPEN(session)

KEXINIT_DH / NoRSP

DH_REPLY / EOF AUTH_PK_OK / EOF

AUTH_SUCCESS / NoRSP

SRV_ACCPT_auth / NoRSPDISCONNECT / NoRSPAUTH_FAILURE / AUTH_PW

12

NEWKEYS / SRV_REQ(auth)+AUTH_NONE

KEXINIT_DH / NoRSP

DH_REPLY / EOF NEWKEYS / EOF AUTH_PK_OK / EOF

SRV_ACCPT_auth / NoRSPDISCONNECT / NoRSPAUTH_FAILURE / AUTH_PW

14

KEXINIT_DH / KEXINITAUTH_SUCCESS / CH_OPEN(session)

DH_REPLY / EOFNEWKEYS / NoRSP AUTH_PK_OK / EOF

KEXINIT_DH / NoRSPSRV_ACCPT_auth / NoRSPDISCONNECT / NoRSPAUTH_FAILURE / AUTH_PW

15

AUTH_SUCCESS / CH_OPEN(session)

DH_REPLY / EOF NEWKEYS / NoRSP AUTH_SUCCESS / EOF AUTH_FAILURE / EOFAUTH_PK_OK / EOF

KEXINIT_DH / NoRSPSRV_ACCPT_auth / NoRSPDISCONNECT / NoRSPDH_REPLY / EOF NEWKEYS / EOFAUTH_SUCCESS / EOF AUTH_FAILURE / EOF AUTH_PK_OK / EOF

KEXINIT_DH / KEXINIT

SRV_ACCPT_auth / NoRSPDISCONNECT / NoRSP

NEWKEYS / SRV_REQ(auth)+AUTH_NONE AUTH_PK_OK / EOF

KEXINIT_DH / NoRSP

AUTH_SUCCESS / NoRSP

DH_REPLY / NEWKEYS

SRV_ACCPT_auth / NoRSPDISCONNECT / NoRSPAUTH_FAILURE / AUTH_PW

DH_REPLY / EOFAUTH_PK_OK / EOF

AUTH_SUCCESS / NoRSP

SRV_ACCPT_auth / NoRSP

KEXINIT_DH / NoRSPDISCONNECT / NoRSPAUTH_FAILURE / AUTH_PW

8

NEWKEYS / SRV_REQ(auth)

DH_REPLY / EOF NEWKEYS / EOF AUTH_PK_OK / EOF

SRV_ACCPT_auth / AUTH_NONE

AUTH_SUCCESS / AUTH_NONE+CH_OPEN(session)

DISCONNECT / NoRSPAUTH_FAILURE / AUTH_PW

11

KEXINIT_DH / KEXINIT

DH_REPLY / EOF NEWKEYS / NoRSPAUTH_PK_OK / EOF

SRV_ACCPT_auth / AUTH_NONE

AUTH_SUCCESS / AUTH_NONE+CH_OPEN(session)

KEXINIT_DH / NoRSPDISCONNECT / NoRSPAUTH_FAILURE / AUTH_PW

▶ Client state machine
▶ Transport + UserAuthentication layers
▶ 8 input messages, 16 states
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Applications to TLS and SSH

Early UserAuthFailure (password Flavor)

0

1

KEXINIT / KEXINIT+DH_INIT

AUTH_FAILURE / AUTH_PW

▶ If a rogue server starts the handshake...
▶ and sends an early UserAuthFailure with the

password method...

▶ the vulnerable client happily sends its password
(AUTH_PW)

▶ Problem: there was no server authentication
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Conclusion

Ongoing and future work

Short-term, on SSH
▶ a paper on the challenges and our answers
▶ discussion with editors about strange behavior

Long-term
▶ more efficient inferences (adaptive learning, system-level tricks)
▶ more efficient analyses/visualisation

Longer-term
▶ towards automatic mappers
▶ extension to other domains
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Questions

Thank you for your attention
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